Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brief Diversions Vastly Improve Focus, Researchers Find

09.02.2011
A new study in the journal Cognition overturns a decades-old theory about the nature of attention and demonstrates that even brief diversions from a task can dramatically improve one’s ability to focus on that task for prolonged periods.

The study zeroes in on a phenomenon known to anyone who’s ever had trouble doing the same task for a long time: After a while, you begin to lose your focus and your performance on the task declines.

Some researchers believe that this “vigilance decrement,” as they describe it, is the result of a drop in one’s “attentional resources,” said University of Illinois psychology professor Alejandro Lleras, who led the new study. “For 40 or 50 years, most papers published on the vigilance decrement treated attention as a limited resource that would get used up over time, and I believe that to be wrong. You start performing poorly on a task because you’ve stopped paying attention to it,” he said. “But you are always paying attention to something. Attention is not the problem.”

Lleras had noticed that a similar phenomenon occurs in sensory perception: The brain gradually stops registering a sight, sound or feeling if that stimulus remains constant over time. For example, most people are not aware of the sensation of clothing touching their skin. The body becomes “habituated” to the feeling and the stimulus no longer registers in any meaningful way in the brain.

In previous studies, Lleras explored the limits of visual perception over time, focusing on a phenomenon called Troxler Fading: when continual attention to a stationary object in one’s peripheral vision can lead to that object’s complete “disappearance” from view.

“Constant stimulation is registered by our brains as unimportant, to the point that the brain erases it from our awareness,” Lleras said. “So I thought, well, if there’s some kind of analogy about the ways the brain fundamentally processes information, things that are true for sensations ought to be true for thoughts. If sustained attention to a sensation makes that sensation vanish from our awareness, sustained attention to a thought should also lead to that thought’s disappearance from our mind!”

In the new study, Lleras and postdoctoral fellow Atsunori Ariga tested participants’ ability to focus on a repetitive computerized task for about an hour under various conditions. The 84 study subjects were divided into four groups:

• The control group performed the 50-minute task without breaks or diversions.

• The “switch” group and the “no-switch” group memorized four digits prior to performing the task, and were told to respond if they saw one of the digits on the screen during the task. Only the switch group was actually presented with the digits (twice) during the 50-minute experiment. Both groups were tested on their memory of the digits at the end of the task.

• The “digit-ignored” group was shown the same digits presented to the switch group during the task, but was told to ignore them.

As expected, most participants’ performance declined significantly over the course of the task. But most critically, Lleras said, those in the switch group saw no drop in their performance over time. Simply having them take two brief breaks from their main task (to respond to the digits) allowed them to stay focused during the entire experiment.

“It was amazing that performance seemed to be unimpaired by time, while for the other groups performance was so clearly dropping off,” he said.

This study is consistent with the idea that the brain is built to detect and respond to change, Lleras said, and suggests that prolonged attention to a single task actually hinders performance.

“We propose that deactivating and reactivating your goals allows you to stay focused,” he said. “From a practical standpoint, our research suggests that, when faced with long tasks (such as studying before a final exam or doing your taxes), it is best to impose brief breaks on yourself. Brief mental breaks will actually help you stay focused on your task!”

Lleras is a researcher at the university’s Beckman Institute for Advanced Science and Technology.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>