Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinguishing Between Two Birds of a Feather

12.08.2008
The bird enthusiast who chronicled the adventures of a flock of red-headed conures in his book “The Wild Parrots of Telegraph Hill” knows most of the parrots by name, yet most of us would be hard pressed to tell one bird from another. While it has been known for a long time that we can become acutely attuned to our day-to-day environment, the underlying neural mechanism has been less clear.

Now, collaboration between researchers at the Salk Institute for Biological Studies and Weill Cornell Medical College has revealed that brain cells processing visual information adjust their filtering properties to make the most sense of incoming information.

“We are best at discriminating the facial features that are typical of our neighbors, and if they happen to be parrots, we become very good at recognizing individual birds,” explains Tatyana Sharpee, Ph.D., an assistant professor in the Laboratory for Computational Biology and the lead author on the current study, which has been published in the August 5 online edition of the Journal of Computational Neuroscience.

Neurobiologists are on a perennial quest to understand how the brain codes and processes information. In the past, they had to rely on simplified objects on a computer screen or random stimuli to garner information on how the brain’s visual circuitry works. “Ultimately we are interested in what happens in a natural environment,” explains Sharpee, “but some questions require more control over the properties of visual stimuli than a picture of a natural scene would allow.”

... more about:
»Wild Parrots

Neurons in the primary visual cortex only respond when a stimulus appears within a window covering a small part of the visual field that the eye sees. This window is known as the neuron’s “receptive field.” Whenever a stimulus enters the neuron’s receptive field, the cell produces a volley of electrical spikes, known as “action potentials” that can be recorded.

But these neurons don’t react to just anything. Instead they are highly specialized and can only “see” a single attribute such as color, motion, or a specific luminance pattern. By measuring a certain neuron’s action potentials in response to random visual stimuli the researchers can infer the profile of its receptive field.

But growing evidence hints that this simple picture is incomplete. “The response of individual neurons can be strongly influenced by simple stimuli in the surround of the receptive field, a phenomenon known as contextual modulation,” explains Sharpee.

To unveil how contextual modulation shapes the apparent profile of neurons specialized in recognizing luminance patterns, Sharpee teamed up with Jonathan D. Victor, Ph.D., Fred Plum Professor of Neurology and Neuroscience at Weill Cornell Medical College in New York. The study made use of two sets of visual stimuli that were first introduced to neurophysiology by Victor. These stimuli matched in size, contrast, and luminance but differ in higher-order statistics leading to oriented checkerboard-like patterns in one case and pinwheel patterns in the other (see image). Single neurons’ responses to individual patterns were recorded in Victor’s laboratory.

Using complimentary methodologies developed by the two authors, who are leaders in applying information theory to extract meaning from a cacophony of signals, they then parsed the code for systematic, context-dependent changes in the neurons’ responses. Maybe not surprisingly, they found that larger receptive field components were more susceptible to contextual modulation and adjusted more than smaller ones.

But more importantly, they discovered that odd-symmetric components induced systematic changes across the whole population of neurons in the V1 area of the visual cortex, whereas even-symmetric components did not.

Odd-symmetric components are patterns that turn into their opposite when rotated by 180 degrees, such as a white and a black bar that are arranged parallel to each other. Even-symmetric components (such as a white bar sandwiched between two black bars) remain unchanged with this rotation.

“Context is an important part of how we perceive visual stimuli,” says Sharpee, “and these results show how individual neurons might adjust their properties in different natural environments, such as on a beach or in a forest.”

The research was supported by a grant from the Swartz Foundation and the National Institutes of Health.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu/

Further reports about: Wild Parrots

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>