Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disney Researchers use automated analysis to find weakness in soccer coaching strategy

14.08.2013
Review of 380 games suggests away teams should be more aggressive

Investigators at Disney Research, Pittsburgh, are applying artificial intelligence to the analysis of professional soccer and, in one application of the automated technique, have discovered a strategic error often made by coaches of visiting teams.

The common wisdom that teams should "win at home and draw away" has encouraged coaches to play less aggressively when their teams are on the road, said Patrick Lucey, a Disney researcher who specializes in automatically measuring human behavior. Yet the computer analysis suggests that it is this defensive-oriented strategy, and not officiating, that reduces the likelihood of road wins.

The researchers from Disney Research were assisted by Dean Oliver, Director of production analytics at ESPN. The team presented its findings at the Conference on Knowledge Discovery and Data Mining (KDD 2013) in Chicago.

Though soccer was the focus of this study, the researchers say their techniques are applicable to other team sports that feature continuous play, including basketball, hockey and American football.

An analysis of all 380 games from a 20-team professional soccer league's 2010-2011 season found that performance measures such as shooting and passing percentage were similar for home and visiting teams.

"My intern, Joe Roth, first noticed this while digging into the passing patterns of different teams. He found that they had approximately the same passing and shooting percentages at home and away. But where they had possession was very different," Lucey said.

At home, the team had the ball in its opponents' defensive third more often – and thus had more shots on goal – than when on the road and played a more defensive, counterattacking style. It was a pattern the researchers discovered held true for nearly every team.

"Visiting coaches are setting their teams up for failure from the get go," Lucey said of the common strategy. "They're not opening themselves up for randomness. The fault doesn't lie with bad calls from the referees."

Though human experts may have a feel for the game that no computer could match, Lucey said computers also have advantages over humans. "An expert might have a gut feeling," he said, "but an expert wouldn't be able to remember all details of all 380 games."

Professional sports teams today increasingly use quantitative methods to analyze performance. Some sports, notably baseball, lend themselves to such analysis because games are naturally divided into plays and sets. Soccer, on the other hand, is continuous and low-scoring, which makes analysis difficult, even though data is plentiful.

Rather than track player positions, for which data is scarce, the Disney researchers used ball action data – time-coded information about everything that is happening to the ball. This information is typically used for online visualizations of matches and is manually compiled by Opta, a commercial sports data supplier.

For the 2010-2011 season, that amounted to 760,000 ball action notations. The Disney software uses this data to infer the position and possession of the ball for every second of 380 games. It then divides the field into different areas and then counts how many times the ball was in each area over a specified time.

This yields "entropy maps," which model the uncertainty of a team's behavior in different areas of the field. Teams with high entropy spread the ball around and are harder to predict; low entropy teams have players who tend to stay within certain areas of the field.

By combining these entropy maps with commonly used match statistics such as passes, shots on goal and fouls, the automated analysis can distinguish between teams with high accuracy, the researchers have found.

The analysis of road team strategy is just one application of this automated technique, Lucey said. It could become a tool for coaches to track their team's progress or to provide insights for developing game plans, as well as an aid to television commentators.

Iain Matthews and Peter Carr, both of Disney Research, Pittsburgh, also were part of the research team. More information is available on the project web site at http://www.disneyresearch.com/project/spatiotemporal-data

About Disney Research

Disney Research is a network of research laboratories supporting The Walt Disney Company. Its purpose is to pursue scientific and technological innovation to advance the company's broad media and entertainment efforts. Disney Research is managed by an internal Disney Research Council co-chaired by Disney-Pixar's Ed Catmull and Walt Disney Imagineering's Bruce Vaughn, and including the directors of the individual labs. It has facilities in Los Angeles, San Francisco, Pittsburgh, Boston and Zürich. Research topics include computer graphics, video processing, computer vision, robotics, radio and antennas, wireless communications, human-computer interaction, displays, data mining, machine learning and behavioral sciences.

Jennifer Liu | EurekAlert!
Further information:
http://www.disney.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>