Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dishware sanitizers prove more effective at killing harmful bacteria

26.01.2011
Ohio State University researchers recently tested the merits of two new dishware sanitizers, and found them more effective at removing bacteria from restaurant dishes than traditional sanitizers.

Melvin Pascall, co-author of the study and associate professor of food science and technology at Ohio State, said that the two new sanitizers reflect the industry's recent efforts to develop more effective germ killers that are also environmentally friendly.

The two sanitizers – one carrying the name brand PROSAN® and the other called neutral electrolyzed oxidizing water – not only proved more effective, but they also contained fewer toxic chemicals.

Pascall and his colleague's research can be found in the January 2011 issue of the journal Food Control.

Traditional sanitizers used by restaurants contain chemicals found in bleach, which can corrode dishware, damage the environment, and irritate or burn the skin, Pascall explained. Such sanitizers also lose their effectiveness with each additional washing cycle. This means that the killing agents within the sanitizers kill fewer amounts of harmful bacteria with each rinse.

E. coli outbreaks have been on the decline since 2002, but food is still the primary means for food borne illness transmission. The Centers for Disease Control and Prevention (CDC) estimated that 28 percent of food borne outbreaks between 1982 and 2002 originated from restaurants or other public food establishments.

Other statistics from the CDC show that approximately 5,000 people die from food borne illness each year while 325,000 are hospitalized for it.

Pascall suspects that this high incidence of illnesses could be related to the large number of patrons who eat at food service establishments in the United States.

In 2009, the National Restaurant Association reported that on a regular day more than 130 million people within the United States will eat at a public food establishment.

“Reducing the level of food borne illness within the restaurants involves serving safe, high-quality meals, but it also requires utensils and dishware to be disease-free,” said Pascall.

He and his colleagues decided to compare the effectiveness of four different sanitizers by contaminating samples of milk and cream cheese with the highly infectious bacteria E. coli, and Listeria innocua. They chose four sanitizers: PROSAN®, a neutral electrolyzed oxidizing water, an ammonia compound, and sodium hypochlorite.

The neutral electrolyzed oxidizing water contained a bacteria-killing agent called hypochlorous acid, and it had an electrical potential different from that of tap water. The combined action of these two agents was responsible for the microbial reduction obtained during the study. One good point about using this water to clean dishes is that it has a neutral pH range of 6.5 to 7.5. A neutral pH means the sanitizer will not corrode dishes as much as highly acidic or alkaline sanitizers, including household bleach.

The researchers used three different types of dishware, plastic trays, ceramic plates, and glass cups. After covering the dishware with the infected milk or cream cheese, they let the food air dry for one hour before washing them.

“We wanted to simulate a restaurant atmosphere, so we allowed the food to cake onto the dishware for roughly the time it might in an actual restaurant,” said Pascall.

The research team washed the dishes manually and by machine. Results indicated that the dishes washed by machine have consistently smaller amounts of the harmful bacteria on them, regardless of the sanitizers used.

“The FDA Food Code states that the amount of bacteria on a surface needs to be at least 100,000 times less after washing compared to before washing in order for it to be considered clean,” explained Pascall. “This is called a 5-log reduction.”

Pascall and colleagues tested multiple dirty loads with the same batch of sanitizer to see how many loads they could wash and still have a 5-log reduction of bacteria. “For both types of bacteria, the electrolyzed water and PROSAN® could wash more loads clean than the ammonia compound and the sodium hypochlorite,” said Pascall. “Between the electrolyzed water and the PROSAN®, they were equally as effective except for cleaning ceramic plates, where the electrolyzed water was slightly more effective,” he continued.

When the researchers were washing loads of glass dishes, the electrolyzed water and the PROSAN® sanitizers lasted 19 washing cycles, whereas the ammonia compound and the sodium hyplochlorite were only as effective over 17 washing cycles.

“Longer lasting sanitizers could be more cost effective for restaurants because they would not have to use nearly as much sanitizing solution as they currently do,” said Pascall. “We cannot provide an estimate comparing the cost per volume between the four sanitizers, however.”

The electrolyzed water was produced in the lab. “Following the upfront cost of the machine used to make the electrolyzed water, this method of sanitization could be extremely cost effective and convenient. The machine only requires salt water to produce the sanitizer, and we made it in the lab shortly before we used it,” Pascall added.

Their research was solely funded by the Center for Innovative Food Technology. Microcide, Inc., the company that created PROSAN®, donates to the Center for Innovative Food Technology. The electrolyzed water generator was provided by Trustwater Inc. in Tipperary, Ireland.

Ohio State research colleagues include Gerald Sigua, Yoon-Hee Lee, Jaesung Lee, and Ken Lee. Sigua has since graduated, Yoon-Hee Lee and Jaesung Lee are research associates, and Ken Lee is a professor of food science and technology and director of Ohio State’s Center for Food Safety and AgSecurity.

Contact: Melvin Pascall (614) 292-6281; pascall.1@osu.edu

Media Contact: Pam Gorder, (614) 292-9475; Gorder.1@osu.edu

Written by Jessica Orwig

Melvin Pascall | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>