Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dietary fiber alters gut bacteria, supports gastrointestinal health

28.06.2012
A University of Illinois study shows that dietary fiber promotes a shift in the gut toward different types of beneficial bacteria.

And the microbes that live in the gut, scientists now believe, can support a healthy gastrointestinal tract as well as affect our susceptibility to conditions as varied as type 2 diabetes, obesity, inflammatory bowel disease, colon cancer, and autoimmune disorders such as rheumatoid arthritis.

As these microbes ferment fiber in the intestine, short-chain fatty acids and other metabolites are produced, resulting in many health benefits for the host, said Kelly Swanson, a U of I professor of animal sciences.

"When we understand what kinds of fiber best nurture these health-promoting bacteria, we should be able to modify imbalances to support and improve gastrointestinal health," he said.

This research suggests that fiber is good for more than laxation, which means helping food move through the intestines, he added.

"Unfortunately, people eat only about half of the 30 to 35 grams of daily fiber that is recommended. To achieve these health benefits, consumers should read nutrition labels and choose foods that have high fiber content," said Swanson.

In the placebo-controlled, double-blind intervention study, 20 healthy men with an average fiber intake of 14 grams a day were given snack bars to supplement their diet. The control group received bars that contained no fiber; a second group ate bars that contained 21 grams of polydextrose, which is a common fiber food additive; and a third group received bars with 21 grams of soluble corn fiber.

On days 16-21, fecal samples were collected from the participants, and researchers used the microbial DNA they obtained to identify which bacteria were present. DNA was then subjected to 454 pyrosequencing, a "fingerprinting" technique that provides a snapshot of all the bacterial types present.

Both types of fiber affected the abundance of bacteria at the phyla, genus, and species level. When soluble corn fiber was consumed, Lactobacillus, often used as a probiotic for its beneficial effects on the gut, increased. Faecalibacterium populations rose in the groups consuming both types of fiber.

According to Swanson, the shifts in bacteria seen in this study—which occurred when more and differing types of fiber were consumed—were the opposite of what you would find in a person who has poor gastrointestinal health. That leads him to believe that there are new possibilities for using pre- and probiotics to promote intestinal health.

"For example, one type of bacteria that thrived as a result of the types of fiber fed in this study is inherently anti-inflammatory, and their growth could be stimulated by using prebiotics, foods that promote the bacteria's growth, or probiotics, foods that contain the live microorganism," he said.

The study will appear in the July 2012 issue of the Journal of Nutrition and is available pre-publication online at http://www.ncbi.nlm.nih.gov/pubmed/22649263. Co-authors are Seema Hooda, Brittany M. Vester Boler, Mariana C. Rossoni Serao, and George C. Fahey Jr., all of the U of I Department of Animal Sciences; Jennifer M. Brulc, Michael A. Staeger, and Thomas W. Boileau, all of the General Mills, Inc., Bell Institute of Health and Nutrition; and Scot E. Dowd of MR DNA Molecular Research LP, Shallowater, TX. Funding was provided in part by General Mills.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>