Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnoses: When Are Several Opinions Better Than One?

19.07.2016

Study investigates conditions for the emergence of collective intelligence: Methods of collective intelligence can result in considerably more accurate medical diagnoses, but only under certain conditions. A study headed by researchers at the Max Planck Institute for Human Development has investigated how group composition affects the outcomes of collective decision making. The results have been published in the online edition of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

The accuracy of medical decisions can be improved by combining several independent opinions. Studies conducted at the Max Planck Institute for Human Development and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries have already found evidence for the benefits of collective intelligence in the context of skin and breast cancer diagnostics.

In a follow-up study, the researchers have now examined how the diagnostic accuracy of individual doctors affects the collective diagnostic outcome. “Collective intelligence is a promising approach to making better decisions. We were interested in which conditions have to be met for the group’s decision to be better than that of the best individual in the group,” says Ralf Kurvers, lead author of the study and researcher in the Center for Adaptive Rationality at the Max Planck Institute for Human Development.

The study shows that the diagnostic accuracy of the doctors whose diagnoses are combined has to be similar. Only then can the collective outperform the best individual in the group. If, in contrast, doctors’ levels of accuracy differ too much, combining their decisions leads to worse diagnostic outcomes. This effect holds across different group sizes and different performance levels of the best group member.

“It is not the case that groups always make the best decisions. If individual abilities differ too much within the group, it makes more sense to rely on the best diagnostician in the group,” says Ralf Kurvers.

For their study, the researchers used two large data sets available from previous studies on breast and skin cancer diagnostics. They were thus able to draw on more than 20,000 diagnoses made by more than 140 doctors to determine individual diagnostic accuracy. They used this information to identify the conditions under which diagnoses made using collective intelligence rules are more accurate than the diagnoses of the best individual. Specifically, they applied the choose-the-most-confident rule and the majority rule. The choose-the-most-confident rule adopts the diagnosis of the doctor who has the highest confidence in his/her diagnosis; the majority rule takes the diagnosis given by the most doctors.

“Our findings represent another major step in understanding how collective intelligence emerges,” says co-author Max Wolf, who investigates collective intelligence in natural settings at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries. The new findings underline how important the diagnostic accuracy of individual doctors is for the overall outcome. Diagnostic accuracy should therefore be a key criterion for assembling groups in medical diagnostics – for example, in the context of independent double reading of mammograms. In future work, the researchers plan to find out what information is needed to gauge a doctor’s diagnostic accuracy as quickly as possible.

+++

Background Information

Original Publication
Kurvers, R. H. J. M., Herzog, S. M., Hertwig, R., Krause, J., Carney, P. A., Bogart, A., Argenziano, G., Zalaudek, I., & Wolf, M. (2016). Boosting medical diagnostics by pooling independent judgments. Proceedings of the National Academy of Sciences of the United States of America. Advance online publication. doi:10.1073/pnas.1601827113

Max Planck Institute for Human Development
The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an interdisciplinary research institution dedicated to the study of human development and education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
IGB is an interdisciplinary research center dedicated to the creation, dissemination, and application of knowledge about freshwater ecosystems. One of its research groups aims to translate findings from basic research to practical applications. In this area of bionics, knowledge about forms of information processing in social systems found in nature (e.g., swarms of fish) is used to improve decision-making processes in human societies.

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2016/07/diagnoses-when-are-several-opini...

Nicole Siller | Max-Planck-Institut für Bildungsforschung
Further information:
http://www.mpib-berlin.mpg.de

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>