Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic retinopathy research could reduce screening costs

07.05.2012
Study proposals could reduce screening costs by around 25 percent

Research carried out at the Peninsula College of Medicine and Dentistry (PCMD), University of Exeter, has concluded that it would be a safe and cost-effective strategy to screen people with type 2 diabetes who have not yet developed diabetic retinopathy, for the disease once every two years instead of annually.

The research is supported by funding from the National Institute for Health Research Peninsula Collaboration for Leadership in Applied Health Research and Care (NIHR PenCLAHRC). It is published today (00:01hrs BST Monday 7th May 2012) on-line in Diabetes Care.

Diabetic retinopathy is a common complication of diabetes. It occurs when high blood sugar levels damage the cells in the retina and, if not treated, can lead to blindness. In all but some cases diabetic retinopathy has a typically slow rate of progression and can take years to develop.

The research team developed a model that simulated the progression of retinopathy in type 2 diabetes and related screening, in order to predict the rates of retinopathy-related sight loss. The model used data from the Royal Devon & Exeter NHS Foundation Trust in the South West of the UK and the research team generated comparative 15-year forecasts to assess the differences between current screening policies and those proposed by the findings of the study.

The study concluded that it is safe to screen type 2 diabetes patients who have not been diagnosed with retinopathy every two years rather than annually, because the research team found that the proportion of patients who develop retinopathy-related sight loss was no different between the two screening intervals.

Proposed savings for the Royal Devon & Exeter Hospital, for which 3,537 of the patients it screens for retinopathy fell into the remit of this study, would be a reduction in costs from £1.83m a year to £1.36m. The study predicts savings of around 25 per cent based on standard assumptions of screening costs.

According to Diabetes UK, some 2.8m people in the UK have diabetes and 10 per cent of them are diagnosed with retinopathy.

The UK's National Institute for Clinical Excellence introduced guidelines for annual screening, but admits that this frequency is arbitrary and has welcomed research to investigate appropriate intervals between screening appointments.

The study was led by Dr. Daniel Chalk, Associate Research Fellow in Applied Operational Research, Peninsula Collaboration for Health, Operational Research and Development (PenCHORD), PCMD. He said: "This is not the first study to investigate screening for diabetic retinopathy, but it is the first to focus on the group of type 2 diabetics who have not yet been diagnosed for the condition. Diabetic retinopathy typically develops at a very slow pace, and as a consequence we wanted to identify whether or not there was any merit in reducing the frequency of screening from annually to every two years."

He added: "We found that there was no perceivable difference in the effectiveness of screening annually or every two years for this particular patient cohort, which would suggest that it would be safe and cost-effective to increase the screening interval to two years. In order to support this, an effective recall system and campaign to impress upon patients the continuing importance of such screening would be beneficial – a lengthening of the screening interval in no way undermines the validity of the screening process itself."

Notes to Editors

The Peninsula Medical School is a joint entity of the University of Exeter, the University of Plymouth and the NHS in the South West of England, and a partner of the Combined Universities in Cornwall. The Peninsula Medical School has created for itself an excellent national and international reputation for groundbreaking research in the areas of diabetes and obesity, neurological disease, child development and ageing, clinical education, health and the environment and health technology assessment. The Peninsula Medical School is licensed under the Human Tissue Act to hold ethically acquired human tissue.

NIHR- PenCLAHRC aims to bring together local universities and their surrounding NHS organisations to test new treatments and new ways of working in specific clinical areas, to see if they are effective and appropriate for everyday use in the health service. Where potential improvements are identified, PenCLAHRC helps NHS staff to incorporate them into their everyday working practices, so that patients across the local community receive a better standard of healthcare.

The National Institute for Health Research provides the framework through which the research staff and research infrastructure of the NHS in England is positioned, maintained and managed as a national research facility. The National Institute for Health Research provides the NHS with the support and infrastructure it needs to conduct first-class research funded by the Government and its partners alongside high-quality patient care, education and training. Its aim is to support outstanding individuals (both leaders and collaborators), working in world class facilities (both NHS and university), conducting leading edge research focused on the needs of patients. http://www.nihr.ac.uk/

Andrew Gould | EurekAlert!
Further information:
http://www.pcmd.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>