Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes shouldn't deter young athletes

15.07.2010
Research finds Type 1 diabetes affects athletic performance, but can be managed

A new study led by York University researchers finds that young athletes with Type 1 diabetes may experience a marked decrease in performance as a result of their blood sugar levels.

The study, published in the International Journal of Pediatrics, reports that participants' athletic prowess was sapped by low blood glucose, a condition known as hypoglycemia. Their cognitive abilities also declined as a result.

"Physical activity itself is unfortunately one of the factors that can cause this dip in blood sugar to occur," says lead researcher Michael Riddell, associate professor in York's School of Kinesiology & Health Science, Faculty of Health.

"Parents tend to get quite concerned about this, understandably so," says Riddell, who was diagnosed with the disease at age 14 and regularly engages in competitive sports. "They wonder, 'should I have my child enrolled in sports at all? Is vigorous activity safe?' Our results show that those with diabetes can compete on equal ground, provided they learn to manage their condition."

The study is the first to examine these interactions in a real-life setting. Researchers outfitted participants with 24-7 glucose monitors during a week-long diabetes sports camp at York University, testing their skills in tennis, basketball or soccer at various times during the day and recording blood sugar levels. Participants, who ranged in age from 6 to 17, were even monitored as they slept using this new technology. Data for the study was recorded during last summer's camp; it will run again this year starting July 19.

Researchers found that sport skill performance was highest when blood glucose values were in a "normal" glycemic range. During hyperglycemia – or elevated blood sugar – results were only slightly reduced. This occurred nearly universally across all participants, however results suggest the degree to which one's sport performance deteriorates depends on the individual.

"Some subjects showed only minor reductions in performance with hypoglycemia while others showed much greater impairment," Riddell says. "This could be related to the level of blood glucose concentration, the rate at which glucose drops, and the individual's capacity to maintain focus in the face of all these factors."

Regular exercise is known to be beneficial for people with diabetes, but can make glycemic control challenging. This balance is even more difficult to achieve in adolescents, as insulin requirements are influenced by fluctuating nutritional intake, physical activity levels, and the rhythms of other anti-insulin hormones. Adding to the confusion is that the symptoms of low or high blood glucose are often masked by exercise, because they're so similar: increased heart rate, sweating, shakiness, fatigue and dehydration.

"Any obvious issues with performance – poor passing, failed free throws and serves – that are really out of the ordinary should be a warning sign to check blood glucose levels and add carbohydrates," Riddell says. The best way to boost blood sugar levels is to consume about 15-30 grams of a fast-acting carbohydrate, such as dextrose tablets, juice or a sports drink. "These are rapidly absorbed and immediately replenish the very small reserve of glucose normally found in the blood stream," he says.

Incidents of moderate to severe hypoglycemia were common on the evenings following sports camp participation. However, researchers found no evidence that a bout of nocturnal hypoglycemia influences sport skill performance the following day. Cognitive testing also showed that participants' reading ability was lower during episodes of hypoglycemia, as was the ability to distinguish and name colours.

Riddell notes the importance of conducting this type of field research, as opposed to lab-based studies. "Actually playing a sport involves different cognitive processing, reaction time and motor skill performance," he says.

The paper, "Blood glucose levels and performance in a sports camp for adolescents with type 1 diabetes mellitus: A field study" is co-authored by Dylan Kelly, a McMaster University undergraduate student under Riddell's supervision, and Dr. Jill Hamilton, pediatric endocrinologist, The Hospital for Sick Children, University of Toronto.

The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Medtronic Canada and Can-Am Care.

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada's most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York's 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

Melissa Hughes | EurekAlert!
Further information:
http://www.yorku.ca

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>