Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes shouldn't deter young athletes

15.07.2010
Research finds Type 1 diabetes affects athletic performance, but can be managed

A new study led by York University researchers finds that young athletes with Type 1 diabetes may experience a marked decrease in performance as a result of their blood sugar levels.

The study, published in the International Journal of Pediatrics, reports that participants' athletic prowess was sapped by low blood glucose, a condition known as hypoglycemia. Their cognitive abilities also declined as a result.

"Physical activity itself is unfortunately one of the factors that can cause this dip in blood sugar to occur," says lead researcher Michael Riddell, associate professor in York's School of Kinesiology & Health Science, Faculty of Health.

"Parents tend to get quite concerned about this, understandably so," says Riddell, who was diagnosed with the disease at age 14 and regularly engages in competitive sports. "They wonder, 'should I have my child enrolled in sports at all? Is vigorous activity safe?' Our results show that those with diabetes can compete on equal ground, provided they learn to manage their condition."

The study is the first to examine these interactions in a real-life setting. Researchers outfitted participants with 24-7 glucose monitors during a week-long diabetes sports camp at York University, testing their skills in tennis, basketball or soccer at various times during the day and recording blood sugar levels. Participants, who ranged in age from 6 to 17, were even monitored as they slept using this new technology. Data for the study was recorded during last summer's camp; it will run again this year starting July 19.

Researchers found that sport skill performance was highest when blood glucose values were in a "normal" glycemic range. During hyperglycemia – or elevated blood sugar – results were only slightly reduced. This occurred nearly universally across all participants, however results suggest the degree to which one's sport performance deteriorates depends on the individual.

"Some subjects showed only minor reductions in performance with hypoglycemia while others showed much greater impairment," Riddell says. "This could be related to the level of blood glucose concentration, the rate at which glucose drops, and the individual's capacity to maintain focus in the face of all these factors."

Regular exercise is known to be beneficial for people with diabetes, but can make glycemic control challenging. This balance is even more difficult to achieve in adolescents, as insulin requirements are influenced by fluctuating nutritional intake, physical activity levels, and the rhythms of other anti-insulin hormones. Adding to the confusion is that the symptoms of low or high blood glucose are often masked by exercise, because they're so similar: increased heart rate, sweating, shakiness, fatigue and dehydration.

"Any obvious issues with performance – poor passing, failed free throws and serves – that are really out of the ordinary should be a warning sign to check blood glucose levels and add carbohydrates," Riddell says. The best way to boost blood sugar levels is to consume about 15-30 grams of a fast-acting carbohydrate, such as dextrose tablets, juice or a sports drink. "These are rapidly absorbed and immediately replenish the very small reserve of glucose normally found in the blood stream," he says.

Incidents of moderate to severe hypoglycemia were common on the evenings following sports camp participation. However, researchers found no evidence that a bout of nocturnal hypoglycemia influences sport skill performance the following day. Cognitive testing also showed that participants' reading ability was lower during episodes of hypoglycemia, as was the ability to distinguish and name colours.

Riddell notes the importance of conducting this type of field research, as opposed to lab-based studies. "Actually playing a sport involves different cognitive processing, reaction time and motor skill performance," he says.

The paper, "Blood glucose levels and performance in a sports camp for adolescents with type 1 diabetes mellitus: A field study" is co-authored by Dylan Kelly, a McMaster University undergraduate student under Riddell's supervision, and Dr. Jill Hamilton, pediatric endocrinologist, The Hospital for Sick Children, University of Toronto.

The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Medtronic Canada and Can-Am Care.

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada's most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York's 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

Melissa Hughes | EurekAlert!
Further information:
http://www.yorku.ca

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>