Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes shouldn't deter young athletes

15.07.2010
Research finds Type 1 diabetes affects athletic performance, but can be managed

A new study led by York University researchers finds that young athletes with Type 1 diabetes may experience a marked decrease in performance as a result of their blood sugar levels.

The study, published in the International Journal of Pediatrics, reports that participants' athletic prowess was sapped by low blood glucose, a condition known as hypoglycemia. Their cognitive abilities also declined as a result.

"Physical activity itself is unfortunately one of the factors that can cause this dip in blood sugar to occur," says lead researcher Michael Riddell, associate professor in York's School of Kinesiology & Health Science, Faculty of Health.

"Parents tend to get quite concerned about this, understandably so," says Riddell, who was diagnosed with the disease at age 14 and regularly engages in competitive sports. "They wonder, 'should I have my child enrolled in sports at all? Is vigorous activity safe?' Our results show that those with diabetes can compete on equal ground, provided they learn to manage their condition."

The study is the first to examine these interactions in a real-life setting. Researchers outfitted participants with 24-7 glucose monitors during a week-long diabetes sports camp at York University, testing their skills in tennis, basketball or soccer at various times during the day and recording blood sugar levels. Participants, who ranged in age from 6 to 17, were even monitored as they slept using this new technology. Data for the study was recorded during last summer's camp; it will run again this year starting July 19.

Researchers found that sport skill performance was highest when blood glucose values were in a "normal" glycemic range. During hyperglycemia – or elevated blood sugar – results were only slightly reduced. This occurred nearly universally across all participants, however results suggest the degree to which one's sport performance deteriorates depends on the individual.

"Some subjects showed only minor reductions in performance with hypoglycemia while others showed much greater impairment," Riddell says. "This could be related to the level of blood glucose concentration, the rate at which glucose drops, and the individual's capacity to maintain focus in the face of all these factors."

Regular exercise is known to be beneficial for people with diabetes, but can make glycemic control challenging. This balance is even more difficult to achieve in adolescents, as insulin requirements are influenced by fluctuating nutritional intake, physical activity levels, and the rhythms of other anti-insulin hormones. Adding to the confusion is that the symptoms of low or high blood glucose are often masked by exercise, because they're so similar: increased heart rate, sweating, shakiness, fatigue and dehydration.

"Any obvious issues with performance – poor passing, failed free throws and serves – that are really out of the ordinary should be a warning sign to check blood glucose levels and add carbohydrates," Riddell says. The best way to boost blood sugar levels is to consume about 15-30 grams of a fast-acting carbohydrate, such as dextrose tablets, juice or a sports drink. "These are rapidly absorbed and immediately replenish the very small reserve of glucose normally found in the blood stream," he says.

Incidents of moderate to severe hypoglycemia were common on the evenings following sports camp participation. However, researchers found no evidence that a bout of nocturnal hypoglycemia influences sport skill performance the following day. Cognitive testing also showed that participants' reading ability was lower during episodes of hypoglycemia, as was the ability to distinguish and name colours.

Riddell notes the importance of conducting this type of field research, as opposed to lab-based studies. "Actually playing a sport involves different cognitive processing, reaction time and motor skill performance," he says.

The paper, "Blood glucose levels and performance in a sports camp for adolescents with type 1 diabetes mellitus: A field study" is co-authored by Dylan Kelly, a McMaster University undergraduate student under Riddell's supervision, and Dr. Jill Hamilton, pediatric endocrinologist, The Hospital for Sick Children, University of Toronto.

The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Medtronic Canada and Can-Am Care.

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada's most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York's 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

Melissa Hughes | EurekAlert!
Further information:
http://www.yorku.ca

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>