Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite a significant reduction in smog-producing toxins, the Greater Toronto Area still violates Canada's standards for ozone air pollution

22.08.2014

Despite a significant reduction in smog-producing toxins in past decade, GTA still violates Canada's ozone standards

A new study shows that while the Greater Toronto Area (GTA) has significantly reduced some of the toxins that contribute to smog, the city continues to violate the Canada-wide standards for ozone air pollution.


Monitoring stations in the Greater Toronto Area used for the collection of NOx and O3 data (blue and pink markers), VOC data (aqua markers) and meteorological data (yellow and green markers).

Smog, which can cause or aggravate health problems such as asthma, emphysema and chronic bronchitis, is produced by a set of complex photochemical reactions involving volatile organic compounds (VOCs), nitrogen oxides and sunlight, which form ground-level ozone.

Smog-forming pollutants come from many sources including automobile exhaust, power plants, factories and many consumer products, such as paint, hairspray, charcoal starter fluid and chemical solvents. In a typical urban area, at least half of the smog precursors come from cars, buses, trucks and boats.

Research led by Jennifer Murphy of the Department of Chemistry at the University of Toronto has found that in the GTA between 2004 and 2012, nitrogen oxides and VOCs were reduced by at least 20 per cent between 2004 and 2012.

"These reductions are in line with the city's 2007 commitment to reducing smog precursors, and can be attributed to the implementation of pollution control measures like the Drive Clean program, and the closure of coal-fired power plants in the region," said Murphy.

Despite this good news, ozone concentrations are not following the same encouraging patterns. Canada-wide standards for ozone continued to be exceeded at all monitoring stations in the GTA. While the team noted lower ozone levels between 2008 and 2011 than in previous years, 2012 marked one of the highest recorded summer ozone concentrations as well as a large number of smog episodes.

Major smog occurrences often are linked to heavy motor vehicle traffic, high temperatures, sunshine and calm winds. Weather and geography affect the location and severity of smog. Because temperature and sunlight regulates the length of time it takes for smog to form, smog can occur more quickly and be more severe on a hot, sunny day.

"We are able to show that high ozone in 2012 was due to the relatively high number of sunny days that allowed ozone to be produced quickly, and low winds, that allowed the pollution to accumulate locally," said Murphy.

The team obtained the data from federal and provincial government monitoring sites throughout the GTA between 2000 and 2012. Their study, entitled "The impacts of precursor reduction and meteorology on ground-level ozone in the Greater Toronto Area," was published in Atmospheric Chemistry and Physics on August 15, 2014. Other members of the U of T research team are Stephanie C. Pugliese, Jeffrey A. Geddes and Jonathan M. Wang.

###

Full article: http://www.atmos-chem-phys.net/14/8197/2014/acp-14-8197-2014.pdf

Kim Luke | Eurek Alert!
Further information:
http://www.utoronto.ca

Further reports about: Despite compounds concentrations nitrogen ozone precursors sunlight toxins winds

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>