Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toward the design of greener consumer products

So you're a manufacturer about to introduce a new consumer product to the marketplace. Will that product or the manufacture of the product contribute to global warming through the greenhouse effect?

Until now, there was no clear way to answer that question. Scientists are reporting development of a new method for screening molecules and predicting how certain materials, ranging from chemicals used in carpeting to electronics, will contribute to global warming. Their study is scheduled for the Nov. 12 issue of ACS' Journal of Physical Chemistry A, a weekly publication.

In the new study, Timothy Lee, Partha Bera, and Joseph Francisco note that carbon dioxide is the main greenhouse gas, which traps heat near Earth's surface like the panes of glass in a greenhouse. However, other gases have the same effect, and in fact are even more efficient greenhouse gases than carbon dioxide. Scientists know that the molecules in gases differ in their ability to contribute to global warming. But they know little about the hows and whys – the molecular basis of those differences.

The scientists analyzed more than a dozen molecules involved in global warming to find out which chemical and physical properties are most important in determining their inherent radiative efficiency, and thus possess the largest potential to contribute to global warming. They found that molecules containing several fluorine atoms tend to be strong greenhouse gases, compared to molecules containing chlorine and/or hydrogen. They found for the first time that molecules containing several fluorine atoms bonded to the same carbon increase their radiative efficiency in a non-linear fashion. "It is hoped that the results from this study will be used in the design of more environmentally friendly materials," the study notes.

ARTICLE #1 FOR IMMEDIATE RELEASE "Identifying the Molecular Origin of Global Warming"


Timothy J. Lee, Ph.D., Chief Space Science & Astrobiology Division
Mail Stop 245-1
NASA Ames Research Center
Moffett Field, CA 94035-1000
Tel: 650-604-5208
Fax: 650-604-6779

Michael Woods | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>