Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward the design of greener consumer products

18.09.2009
So you're a manufacturer about to introduce a new consumer product to the marketplace. Will that product or the manufacture of the product contribute to global warming through the greenhouse effect?

Until now, there was no clear way to answer that question. Scientists are reporting development of a new method for screening molecules and predicting how certain materials, ranging from chemicals used in carpeting to electronics, will contribute to global warming. Their study is scheduled for the Nov. 12 issue of ACS' Journal of Physical Chemistry A, a weekly publication.

In the new study, Timothy Lee, Partha Bera, and Joseph Francisco note that carbon dioxide is the main greenhouse gas, which traps heat near Earth's surface like the panes of glass in a greenhouse. However, other gases have the same effect, and in fact are even more efficient greenhouse gases than carbon dioxide. Scientists know that the molecules in gases differ in their ability to contribute to global warming. But they know little about the hows and whys – the molecular basis of those differences.

The scientists analyzed more than a dozen molecules involved in global warming to find out which chemical and physical properties are most important in determining their inherent radiative efficiency, and thus possess the largest potential to contribute to global warming. They found that molecules containing several fluorine atoms tend to be strong greenhouse gases, compared to molecules containing chlorine and/or hydrogen. They found for the first time that molecules containing several fluorine atoms bonded to the same carbon increase their radiative efficiency in a non-linear fashion. "It is hoped that the results from this study will be used in the design of more environmentally friendly materials," the study notes.

ARTICLE #1 FOR IMMEDIATE RELEASE "Identifying the Molecular Origin of Global Warming"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/jp905097g

CONTACT:
Timothy J. Lee, Ph.D., Chief Space Science & Astrobiology Division
Mail Stop 245-1
NASA Ames Research Center
Moffett Field, CA 94035-1000
Tel: 650-604-5208
Fax: 650-604-6779

Michael Woods | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>