Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depressed fish could help in the search for new drug treatments

06.08.2013
Antidepressant normalises the behaviour of zebrafish with a defective stress hormone receptor

Chronic stress can lead to depression and anxiety in humans. Scientists working with Herwig Baier, Director at the Max Planck Institute of Neurobiology in Martinsried, recently discovered a very similar link in fish. Normally, the stress hormone cortisol helps fish, as in humans, to regulate stress.


The zebrafish (Danio rerio) is a popular model organism for many questions in the field of genetics and developmental biology.
© MPI f. Neurobiology


Zebrafish with a mutation in the glucocorticoid receptor exhibit passive behaviour in a stressful situation. The behaviour returns to normal with a commercial antidepressant in the water. The findings demonstrate a significant correlation between stress regulation and mood disorders, one which evidently plays a central role in humans, too.
© Max Planck Institute of Neurobiology / Schorner

Fish that lack the receptor for cortisol as a result of a genetic mutation exhibited a consistently high level of stress. They were unable to adapt to a new and unfamiliar situation. The fishes’ behaviour returned to normal when an antidepressant was added to the water. These findings demonstrate a direct causal link between chronic stress and behavioural changes which resemble depression. The findings could also open the door to an effective search for new drugs to treat psychiatric disorders.

In stressful situations, the body releases hormones in order to ready itself for a fight or flight reaction. But it is equally important for the hormone level to return to normal after a certain time. If that does not happen, chronic stress can result, a condition that is linked to depression and anxiety, among other things. Whether stress is a trigger or merely a side effect of such affective disorders remains unclear.

The indication of a causal relationship between stress and depression comes from totally unexpected quarters. An international team led by Herwig Baierfrom the Max Planck Institute of Neurobiology in Martinsried and the University of California in San Francisco observed that zebrafish suffering from chronic stress as a result of a genetic mutation showed signs of depression in behavioural tests. The zebrafish is a popular model organism for biological and medical research. So far, however, it has not been an obvious research object for the study of psychiatric disorders. This may be about to change.

"These mutant fish behaved very strangely when we moved them to a new aquarium," reports Herwig Baier. All animals experience stress upon moving to an unfamiliar environment. Being separated from members of their own species places the fish under added pressure. Zebrafish initially act withdrawn in this situation and swim around very hesitantly in the first few minutes. But ultimately, curiosity prevails, and they begin to investigate their new tank. However, the fish with the mutation had a particularly strong reaction to the isolation: they sank to the bottom of the tank and stayed completely still. They took an exceptionally long time to get used to the new environment.

An analysis of these "lethargic" fish showed that they had an extremely elevated concentration of the stress hormones cortisol, CRH and ACTH. "We therefore postulated that these fish were suffering from chronic stress and were exhibiting certain aspects of depressive or perhaps hyper-anxious behaviour," says Baier. To put this assumption to the test, the scientists added the antidepressant fluoxetine (marketed under the trade name Prozac, among others) to the water. Shortly afterwards, the fish's behaviour returned to normal.

What was it that made these fish so different? The scientists uncovered a mutation in the glucocorticoid receptor, which is present in almost all of the body's cells and which binds the hormone cortisol. Normally, when cortisol is bound to this receptor it restricts the release of the stress hormones CRH and ACTH. It is this regulating mechanism that enables humans and many animal species to cope with stress. In the type of fish the scientists examined, however, the glucocorticoid receptor was unable to function, and so the level of stress hormones remained high.

"Although there are a whole range of drugs available for depression, no one yet knows what the relationship is between their effect and the stress hormones," explains Herwig Baier. "Our findings provide the first evidence of a possible connection." Understanding the molecular and neurobiological relationships between stress regulation and affective disorders is important in the search for new treatments and drugs. The scientists' discovery is therefore also of interest to the pharmaceutical industry, given that the zebrafish could turn out to be a good model organism for a large-scale screen for new drugs.

Contact

Prof. Dr. Herwig Baier
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3200
Fax: +49 89 8578-3208
Email: hbaier@­neuro.mpg.de
Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­neuro.mpg.de
Original publication
L Ziv, A Muto, PJ Schoonheim, SH Meijsing, D Strasser, HA Ingraham, MJM Schaaf, KR Yamamoto & H Baier
An affective disorder in zebrafish with mutation of the glucocorticoid receptor
Molecular Psychiatry (2013) 18, 681--691; doi:10.1038/mp.2012.64; June 2013

Prof. Dr. Herwig Baier | EurekAlert!
Further information:
http://www.mpg.de/7491503/fish-depression

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>