Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depressed? Fearful? It Might Help to Worry, Too

01.04.2010
A new study of brain activity in depressed and anxious people indicates that some of the ill effects of depression are modified – for better or for worse – by anxiety.

The study, in the journal Cognitive, Affective & Behavioral Neuroscience, looked at depression and two types of anxiety: anxious arousal, the fearful vigilance that sometimes turns into panic; and anxious apprehension, better known as worry.

The researchers used functional Magnetic Resonance Imaging (fMRI) at the Beckman Institute’s Biomedical Imaging Center to look at brain activity in subjects who were depressed and not anxious, anxious but not depressed, or who exhibited varying degrees of depression and one or both types of anxiety.

“Although we think of depression and anxiety as separate things, they often co-occur,” said University of Illinois psychology professor Gregory A. Miller, who led the research with Illinois psychology professor Wendy Heller. “In a national study of the prevalence of psychiatric disorders, three-quarters of those diagnosed with major depression had at least one other diagnosis. In many cases, those with depression also had anxiety, and vice versa.”

Previous studies have generally focused on people who were depressed or anxious, Miller said. Or they looked at both depression and anxiety, but lumped all types of anxiety together.

Miller and Heller have long argued that the anxiety of chronic worriers is distinct from the panic or fearful vigilance that characterizes anxious arousal.

In an earlier fMRI study, they found that the two types of anxiety produce very different patterns of activity in the brain. Anxious arousal lights up a region of the right inferior temporal lobe (just behind the ear). Worry, on the other hand, activates a region in the left frontal lobe that is linked to speech production.

(Other research has found that depression, by itself, activates a region in the right frontal lobe.)

In the new study, brain scans were done while participants performed a task that involved naming the colors of words that had negative, positive, or neutral meanings. This allowed the researchers to observe which brain regions were activated in response to emotional words.

The researchers found that the fMRI signature of the brain of a worried and depressed person doing the emotional word task was very different from that of a vigilant or panicky depressed person.

“The combination of depression and anxiety, and which type of anxiety, give you different brain results,” Miller said.

Perhaps most surprisingly, anxious arousal (vigilance, fear, panic) enhanced activity in that part of the right frontal lobe that is also active in depression, but only when a person’s level of anxious apprehension, or worry, was low. Neural activity in a region of the left frontal lobe, an area known to be involved in speech production, was higher in the depressed and worried-but-not-fearful subjects.

Despite their depression, the worriers also did better on the emotional word task than those depressives who were fearful or vigilant. The worriers were better able to ignore the meaning of negative words and focus on the task, which was to identify the color – not the emotional content – of the words.

These results suggest that fearful vigilance sometimes heightens the brain activity associated with depression, whereas worry may actually counter it, thus reducing some of the negative effects of depression and fear, Miller said.

“It could be that having a particular type of anxiety will help processing in one part of the brain while at the same time hurting processing in another part of the brain,” he said. “Sometimes worry is a good thing to do. Maybe it will get you to plan better. Maybe it will help you to focus better. There could be an up-side to these things.”

Researchers from the University of Illinois, Pennsylvania State University and the University of Colorado collaborated on the study. The National Institute of Mental Health and the National Institute of Drug Abuse at the National Institutes of Health; the Beckman Institute and Intercampus Research Initiative in Biotechnology supported the research.

Miller is affiliated with the U. of I. department of psychology, the Beckman Institute, the Neuroscience Program in the College of Liberal Arts and Sciences, and the department of psychiatry in the College of Medicine.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>