Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental X-rays can predict fractures

07.12.2011
It is now possible to use dental X-rays to predict who is at risk of fractures, reveals a new study from researchers at the Sahlgrenska Academy reported in the journal Nature Reviews Endocrinology.

In a previous study, researchers from the University of Gothenburg’s Sahlgrenska Academy and Region Västra Götaland demonstrated that a sparse bone structure in the trabecular bone in the lower jaw is linked to a greater chance of having previously had fractures in other parts of the body.

X-rays investigates bone structure

The Gothenburg researchers have now taken this a step further with a new study that shows that it is possible to use dental X-rays to investigate the bone structure in the lower jaw, and so predict who is at greater risk of fractures in the future. Published in the journal Bone, the results were also mentioned in both Nature Reviews Endocrinology and the Wall Street Journal.

Linked to risk of fractures

"We’ve seen that sparse bone structure in the lower jaw in mid-life is directly linked to the risk of fractures in other parts of the body, later in life,”says Lauren Lissner, a researcher at the Institute of Medicine at the Sahlgrenska Academy.

Study started 1968

The study draws on data from the Prospective Population Study of Women in Gothenburg started in 1968. Given that this has now been running for over 40 years, the material is globally unique. The study included 731 women, who have been examined on several occasions since 1968, when they were 38-60 years old. X-ray images of their jaw bone were analysed in 1968 and 1980 and the results related to the incidence of subsequent fractures.

For the first 12 years fractures were self-reported during followup examinations. It is only since the 1980s that it has been possible to use medical registers to identify fractures. A total of 222 fractures were identified during the whole observation period.

One out of five in higher risk

The study shows that the bone structure of the jaw was sparse in around 20% of the women aged 38-54 when the first examination was carried out, and that these women were at significantly greater risk of fractures.

The study also shows that the older the person, the stronger the link between sparse bone structure in the jaw and fractures in other parts of the body.

Applies for both sexes

Although the study was carried out on women, the researchers believe that the link also applies for men.

“Dental X-rays contain lots of information on bone structure,” says Grethe Jonasson, the researcher at the Research Centre of the Public Dental Service in Västra Götaland who initiated the fractures study. “By analysing these images, dentists can identify people who are at greater risk of fractures long before the first fracture occurs.”

The article “A prospective study of mandibular trabecular bone to predict fracture incidence in women: A low-cost screening tool in the dental clinic” was published in Bone in October.

Link to the article: http://www.sciencedirect.com/science/article/pii/S8756328211010775

For more information, please contact:

Lauren Lissner, Institute of Medicine, Sahlgrenska Academy
Tel: +46 (0)31 786 6847
Mobile: +46 (0)708 207 343
E-mail: Lauren.Lissner@medfak.gu.se
Grethe Jonasson, Research Centre, Public Dental Service, Region Västra Götaland
Tel: +46 (0)33 209 866
Mobile: +46 (0)70 928 5671

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.sciencedirect.com/science/article/pii/S8756328211010775

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>