Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental pulp stem cells transformed by 'bad breath' chemical

27.02.2012
Japanese scientists have found that the odorous compound responsible for halitosis – otherwise known as bad breath – is ideal for harvesting stem cells taken from human dental pulp.

In a study published today, Monday 27 February, in IOP Publishing's Journal of Breath Research, researchers showed that hydrogen sulphide (H2S) increased the ability of adult stem cells to differentiate into hepatic (liver) cells, furthering their reputation as a reliable source for future liver-cell therapy.

This is the first time that liver cells have been produced from human dental pulp and, even more impressively, have been produced in high numbers of high purity.

"High purity means there are less 'wrong cells' that are being differentiated to other tissues, or remaining as stem cells. Moreover, these facts suggest that patients undergoing transplantation with the hepatic cells may have almost no possibility of developing teratomas or cancers, as can be the case when using bone marrow stem cells," said lead author of the study Dr. Ken Yaegaki.

The remarkable transforming ability of stem cells has led to significant focus from research groups around the world and given rise to expectations of cures for numerable diseases, including Parkinson's and Alzheimer's.

In this study, Dr. Ken Yaegaki and his group, from Nippon Dental University, Japan, used stem cells from dental pulp – the central part of the tooth made up of connective tissue and cells – which were obtained from the teeth of dental patients who were undergoing routine tooth extractions.

Once the cells were sufficiently prepared, they were separated into two batches (a test and a control) and the test cells incubated in a H2S chamber. They were harvested and analysed after 3, 6 and 9 days to see if the cells had successfully transformed into liver cells.

To test if the cells successfully differentiated under the influence of H2S, the researchers carried out a series of tests looking at features that were characteristic of liver cells. In addition to physical observations under the microscope, the researchers investigated the cell's ability to store glycogen and then recorded the amount of urea contained in the cell.

"Until now, nobody has produced the protocol to regenerate such a huge number of hepatic cells for human transplantation. Compared to the traditional method of using fetal bovine serum to produce the cells, our method is productive and, most importantly, safe" continued Dr. Yaegaki.

Hydrogen sulphide (H2S) has the characteristic smell of rotten eggs and is produced throughout the body in the tissues. Although its exact function is unknown, researchers have been led to believe that it plays a key role in many physiological processes and disease states.

From Monday 27 February, this paper can be downloaded from http://iopscience.org/1752-7163/6/1/017103

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>