Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental bib clips can harbor oral and skin bacteria even after disinfection

02.04.2013
40 percent of bib clips retained aerobic bacteria; 70 percent retained anaerobic bacteria post-disinfection

Researchers at Tufts University School of Dental Medicine and the Forsyth Institute published a study today that found that a significant proportion of dental bib clips harbored bacteria from the patient, dental clinician and the environment even after the clips had undergone standard disinfection procedures in a hygiene clinic.

Although the majority of the thousands of bacteria found on the bib clips immediately after treatment were adequately eliminated through the disinfection procedure, the researchers found that 40% of the bib clips tested post-disinfection retained one or more aerobic bacteria, which can survive and grow in oxygenated environments. They found that 70% of bib clips tested post-disinfection retained one or more anaerobic bacteria, which do not live or grow in the presence of oxygen.

The full study titled "Comprehensive Analysis of Aerobic and Anaerobic Bacteria Found on Dental Bib Clips at Hygiene Clinic" will be published as a supplement to the April issue of Compendium of Continuing Education in Dentistry, one of the leading dental journals in the U.S., and is now available for download at http://www.dentalbibclipbacteria.com.

"The study of bib clips from the hygiene clinic demonstrates that with the current disinfection protocol, specific aerobic and anaerobic bacteria can remain viable on the surfaces of bib clips immediately after disinfection," said Addy Alt-Holland, M.Sc., Ph.D., Assistant Professor at the Department of Endodontics at Tufts University School of Dental Medicine and the lead researcher on the study. "Although actual transmission to patients was not demonstrated, some of the ubiquitous bacteria found may potentially become opportunistic pathogens in appropriate physical conditions, such as in susceptible patients or clinicians."

The study analyzed the clips on 20 dental bib holders after they had been used on patients treated in a dental hygiene clinic. The bib clips were sampled for aerobic and anaerobic bacterial contaminants immediately after treatment (post-treatment clips) and again after the clips were cleaned using disinfecting, alcohol-containing wipes (post-disinfection clips) according to the manufacturer instructions and the clinic's disinfection protocol.

Led by Dr. Bruce Paster, Chair of the Department of Microbiology at the Forsyth Institute, microbiologists at the Forsyth Institute used standard molecular identification techniques and a proprietary, one-of-a-kind technology that can detect 300 of the most prevalent oral bacteria, to analyze the sampled bacteria from the bib clips. The analyses found:

Immediately after treatment and before the clips had been disinfected, oral bacteria often associated with chronic and refractory periodontitis were found on 65% of the clips.
After disinfection, three of the bib clips (15%) still had anaerobic Streptococcus bacteria from the oral cavity and upper respiratory tract. Five percent (5%) of the clips still harbored at least one bacteria from the Staphylococcus, Prevotella and Neisseria species.

Additionally, after disinfection, nine clips (45%) retained at least one anaerobic bacterial isolate from skin.

"The results of our analysis show that there is indeed a risk of cross-contamination from dental bib clips. The previous patient's oral bacteria could potentially still be on the clip and the new patient has a chance of being exposed to infection by using that same bib clip," said Dr. Paster. "It is important to the clinician and the patient that the dental environment be as sterile as possible; thus it's concerning that we found bacteria on the clips after disinfection. This situation can be avoided by thoroughly sterilizing the clips between each patient or by using disposable bib holders."

Researchers involved in the study hypothesized that bacteria found on bib clips after patient care could have been transferred from patients and clinicians to the clips in different ways:

Oral bacteria present in the patient's saliva and the spray or spatter produced during dental treatments may contribute to the presence of bacteria on the disinfected bib clips.

Bacteria can also be transferred from the gloved hands of dental practitioners to the clips prior to- or during the patient's treatment.

Bacteria can be transferred from the patient's hands to the clips if the patient touches the clip.

In a previous study published in August 2012 by researchers at Tufts University School of Dental Medicine and the Forsyth Institute it was found that 20% to 30% of dental bib clips still harbor aerobic bacterial contaminants even after proper disinfection procedures. Rubber-faced metal bib clips were found to retain more bacteria than bib clips made only of metal immediately after treatment and before disinfection. Four other research reports have found bacterial contamination on dental bib holders, including research conducted by U.S. infection control specialist Dr. John Molinari, the University of North Carolina at Chapel Hill's School of Dentistry Oral Microbiology lab and the University of Witten/Herdecke in Germany.

Visit http://www.dentalbibclipbacteria.com to download a full transcript of the research paper "Comprehensive Analysis of Aerobic and Anaerobic Bacteria Found on Dental Bib Clips at Hygiene Clinic", a supplement to the Compendium of Continuing Education in Dentistry Volume 34, Number 4, 2013. The authors of the study include: Addy Alt-Holland, BSC, MSC, PhD; Christina M. Murphy, BS; Anne Powers, RDH; Claire L. Kublin, BS; Youjin Natalie Jeong, DMD; Michelle DiMattia; Linh Pham; Angel Park, MS, MPH; Matthew Finkelman, PhD; Maureen Lombard, RDH, MM; James B. Hanley, DMD; Bruce J. Paster, PhD; and Gerard Kugel, DMD, PhD.

About the Forsyth Institute

The Forsyth Institute is the world's leading independent organization dedicated to scientific research and education in oral health and related biomedical sciences. Established in 1910, Forsyth's goal is to lead the discovery, communication and application of breakthroughs in oral health and disease prevention that will significantly improve the health and well-being of the nation and the world. The Forsyth Institute is affiliated with the Harvard School of Dental Medicine. For more information about Forsyth, visit its website at http://www.forsyth.org.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>