Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dense breasts can nearly double the risk of breast cancer recurrence

21.03.2012
Women aged 50 and over with breasts that have a high percentage of dense tissue are at greater risk of their breast cancer recurring, according to Swedish research presented at the eighth European Breast Cancer Conference (EBCC-8) in Vienna today (Wednesday).

Dr Louise Eriksson and her colleagues from the Karolinska Institutet (Stockholm, Sweden) found that women with denser breasts had nearly double the risk of their cancer recurring, either in the same breast or in the surrounding lymph nodes, than women with less dense breasts. They warn that doctors should take breast density into account when making decisions about treatment and follow-up for these women.

When a woman has a mammogram, the resulting scan gives an image of the breast that shows areas of white and black. The white areas represent the dense tissue, made up of the epithelium and stroma [1]. The black areas are made up of fatty tissue, which is not dense. The percentage density (PD) of the breast is calculated by dividing the dense area by the area of the whole breast (dense and non-dense tissue included).

Breast density varies from woman to woman, and it also decreases with age. Dr Eriksson explained: "Density can vary greatly, even between postmenopausal women. In the group of women I studied, those with the lowest percentage density had breasts that were less than one percent dense, whereas those with highest PD had 75-80% dense breasts. The mean average PD was 18%. However, density does decrease with age. Studies have shown a decrease by approximately two percent per year. The largest decrease is seen at menopause when PD decreases by approximately 10%."

The researchers studied the mammograms and outcomes for 1,774 post-menopausal women who were aged 50-74 and who were part of a larger study of all women with breast cancer diagnosed between 1993-1995 in Sweden.

"We found that if you have a PD at diagnosis of 25% or more, you have an almost two-fold increased risk of local recurrence in the breast and surrounding lymph nodes than women with a PD of less than 25%. However, density does not increase the risk of distant metastasis and has no effect on survival. We also see that although mammographic density is one of the strongest risk factors for breast cancer it doesn't seem to influence tumour development in any specific way; for instance, it isn't more associated with oestrogen receptor positive tumours than oestrogen receptor negative tumours, but seems to act as a general stimulator of tumour development," said Dr Eriksson, who is a PhD student at the Karolinska, as well as a physician at the Stockholm South General Hospital.

"Our study shows that breast density before or at diagnosis should be taken into account even after diagnosis, for instance, when deciding on adjuvant treatment and follow-up routines; perhaps women with dense breasts should be followed more frequently or for a longer period of time in order to quickly spot any local recurrence.

"As far as screening programmes are concerned, it is already known that breast density is a risk factor for the occurrence of breast cancer and that it decreases the sensitivity of mammograms. Our study confirms the importance of taking breast density into account in the screening setting."

Until now, little was known about the association between density, tumour characteristics and prognosis once cancer had occurred, and results were conflicting. This study is important because of its size and detailed information on each woman. "This is one of the largest studies to date studying mammographic density, tumour characteristics, and prognosis, including almost 50% of all Swedish breast cancer cases diagnosed 1993-1995," said Dr Eriksson.

Cancer researchers do not know why breast density is a risk factor for breast cancer. "It could simply be due to higher density being associated with more cells, which means that more cells are at risk of developing cancer," she said. "Another hypothesis is that it is the relationship between mammographic density and the stroma (which has been shown to be the main compound of mammographic density) that is central to the increase in risk. There is no leading hypothesis on why an increased amount of stroma would increase breast cancer risk, but it is known that the interaction between the epithelial cells and the stroma is crucial to the development of breast cancer. Based on the results from our study, we propose that mammographic density creates a beneficial environment for epithelial cells to transform into cancer cells; much like fertile soil giving a planted seed the needed nutrients to grow and develop."

Professor David Cameron, from the University of Edinburgh (Edinburgh, UK), and chair of EBCC-8 said: "This study raises questions about how and why the appearance of normal breast tissue on a mammogram could influence the chances of a local recurrence of breast cancer. It is, therefore, more thought-provoking than practice-changing, since it is not clear what a patient, or her physician, should do if the mammogram shows a higher density of the normal breast tissue. A number of factors are known that influence mammographic breast density, but more research is needed to know which of these, if any, is responsible for this important observation."

Emma Mason | EurekAlert!
Further information:
http://www.ecco-org.eu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>