Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delaying the Aging Process Protects Against Alzheimer’s Disease

14.12.2009
Aging is the single greatest risk factor for Alzheimer’s disease. In their latest study, researchers at the Salk Institute for Biological Studies found that simply slowing the aging process in mice prone to develop Alzheimer’s disease prevented their brains from turning into a neuronal wasteland.

“Our study opens up a whole new avenue of looking at the disease,” says the study’s leader, Howard Hughes Medical Investigator Andrew Dillin, Ph.D., a professor in the Salk Molecular and Cell Biology Laboratory. “Going forward, looking at the way we age may actually have more impact on the treatment and prevention of Alzheimer’s disease than studying the basic biology of the disease itself.”

Their finding, published in the Dec. 11, 2009 issue of the journal Cell, is the latest clue in the Salk scientists’ ongoing quest to shed light on the question of whether Alzheimer’s disease onset late in life is a disastrous consequence of the aging process itself or whether the beta amyloid aggregates that cause the disease simply take a long time to form.

Age is the major risk factor for the development of Alzheimer’s disease. Beyond age 65, the number of people with the disease doubles every five years. Centenarians, however, seem to escape most common age-related diseases, including the ravages of Alzheimer’s disease.

“In this study, we went directly to the root cause of Alzheimer’s disease and asked whether we could influence the onset of the disease by modulating the aging process,” says first author Ehud Cohen, Ph.D., formerly a postdoctoral researcher in Dillin’s lab and now an assistant professor at the Hebrew University–Hadassah Medical School in Jerusalem, Israel.

To answer this intriguing question, he slowed the aging process in a mouse model for Alzheimer’s by lowering the activity of the IGF-1 signaling pathway. “This highly conserved pathway plays a crucial role in the regulation of lifespan and youthfulness across many species, including worms, flies, and mice and is linked to extreme longevity in humans,” he explains. As a result, mice with reduced IGF-1 signaling live up to 35 percent longer than normal mice.

Cohen then employed a battery of behavioral tests to find out whether it was simply the passage of time or aging per se that determined the onset of the disease. Chronologically old but biologically young animals appeared nearly normal long after age-matched, normal-aging Alzheimer’s mice exhibited severe impairments in their ability to find a submerged platform in the Morris water maze or stay atop a revolving Rota Rod.

“These behavioral differences between normal and long-lived mice were apparent at nine months of age, but the big surprise came when we took a closer look at the plaques in their brains,” says Cohen.

One of the telltale signs of Alzheimer’s disease is the buildup of toxic clumps of beta amyloid plaques in the brain. Beta amyloid production probably occurs in all brains, but healthy cells clear away excess amounts. Brains of people with Alzheimer’s disease, on the other hand, are unable to control beta amyloid accumulation. The same is true for Alzheimer’s mouse models, which are genetically engineered to overproduce beta amyloid.

Although long-lived mice didn’t show any of the cognitive or behavioral impairments typical of Alzheimer’s disease till very late in life, their brains were riddled with highly compacted plaques.

“Although before it was thought that plaques are the causative agents of Alzheimer’s disease, our results clearly support the emerging theme that they have a protective function,” says Cohen. “As mice age, they become less efficient at stowing away toxic beta amyloid fibrils in tightly packed aggregates.”

An earlier study by Cohen, Dillin, and colleagues, in which they had used roundworms to study the effects of the aging process on protein aggregation, had indicated that high molecular weight aggregates of beta amyloid might actually be less toxic than smaller beta amyloid fibrils. “But worms don’t have brains as we do, and it wasn’t clear whether these results would be relevant for mammals,” he says.

And what about those lucid centenarians? “Interestingly, three studies found that some very long-lived humans carry mutations in components of the IGF-1 signal pathway—the same pathway that we perturbed to increase the lifespan of the mice in our study,” says Dillin.

“The reporting of this work is a celebration for the entire field of aging researchers, as it validates the long-held hypothesis that genetic and pharmacologic changes to create a healthy lifespan, or ‘healthspan,’ can greatly reduce the onset of some of the most devastating diseases that afflict mankind,” he adds.

The work was funded in part by the National Institutes of Health and the McKnight Endowment for Neuroscience.

Researchers who also contributed to the work include Johan F. Paulsson, Deguo Du and Jeffery W. Kelly at the Skaggs Institute of Chemical Biology, The Scripps Research Institute, Pablo Blinder in the Department of Physics at the University of California, San Diego, Tal Burstyn-Cohen in the Molecular Neurobiology Laboratory at the Salk Institute, Anthony Adame, Hang M. Pham and Eliezer Masliah in the Department of Neurosciences at University of California, San Diego, and Gabriela Estepa in the Molecular and Cell Biology Laboratory at the Salk Institute.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes, and cardiovascular disorders by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>