Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficits in brain's reward system observed in ADHD patients

10.09.2009
Low levels of dopamine markers may underlie symptoms; implications for treatment

A brain-imaging study conducted at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory provides the first definitive evidence that patients suffering from attention deficit hyperactivity disorder (ADHD) have lower-than-normal levels of certain proteins essential for experiencing reward and motivation.

"These deficits in the brain's reward system may help explain clinical symptoms of ADHD, including inattention and reduced motivation, as well as the propensity for complications such as drug abuse and obesity among ADHD patients," said lead author Nora Volkow, Director of the National Institute on Drug Abuse and a long-time collaborator on neuroimaging research at Brookhaven Lab.

The study, published in the September 9, 2009, issue of the Journal of the American Medical Association, also has important implications for treatment. "Finding ways to address the underlying reward-system deficit could improve the direct clinical outcome of ADHD, and potentially reduce the likelihood of other negative consequences of this condition," said study co-author Gene-Jack Wang, chair of Brookhaven's medical department.

Prior to this study, it was not clear whether people with ADHD had abnormalities in the brain's dopamine-mediated motivation/reward system. Previous studies were relatively small and may have been complicated by the fact that some ADHD patients had undergone treatments, or had a history of drug abuse or other conditions that can affect the dopamine system.

To strengthen the statistics and control for these factors, the current study looked at 53 adult ADHD patients who had never received treatment and 44 healthy control subjects — all of whom had been carefully screened to eliminate potentially confounding variables.

The scientists used positron emission tomography (PET) to measure two markers of the dopamine system — dopamine receptors, to which the chemical messenger binds to propagate the "reward" signal, and dopamine transporters, which take up and recycle excess dopamine after the signal is sent.

Lying in a PET scanner, each patient was injected with a minute amount of a "radiotracer" compound — a chemical labeled with a radioactive form of carbon and designed to bind specifically to one of the targets. Different tracers were used for each target, and patients were scanned for each at separate times. By detecting the signal from the radiotracers, the PET machine can measure the receptor and transporter locations and concentrations in various parts of the brain.

The results clearly showed that, relative to the healthy control subjects, the ADHD patients had lower levels of dopamine receptors and transporters in the accumbens and midbrain — two key regions of the brain directly involved in processing motivation and reward. In addition, the measurements of dopamine markers correlated with measures of behavior and clinical observations of ADHD symptoms, such as reduced levels of attention as measured by standard psychological tests.

"Our findings imply that these deficits in the dopamine reward pathway play a role in the symptoms of inattention in ADHD and could underlie these patients' abnormal responses to reward," Volkow said.

"This pathway plays a key role in reinforcement, motivation, and in learning how to associate various stimuli with rewards," she continued. "Its involvement in ADHD supports the use of interventions to enhance the appeal and relevance of school and work tasks to improve performance.

"Our results also support the continued use of stimulant medications — the most common pharmacological treatment for ADHD — which have been shown to increase attention to cognitive tasks by elevating brain dopamine," she said.

The findings may also help explain why ADHD patients are more likely than control subjects to develop drug-abuse disorders and conditions such as obesity.

Said Wang: "Other studies from our group suggest that patients who abuse drugs or overeat may be unconsciously attempting to compensate for a deficient reward system by boosting their dopamine levels. Understanding how deficits in the dopamine system contribute to ADHD and finding ways to improve the functioning of the reward system could help mitigate these troubling consequences in the ADHD patient population."

This research was supported by the National Institute on Alcohol Abuse and Alcoholism Intramural Research Program and by the National Institute on Mental Health. The Office of Biological and Environmental Research within DOE's Office of Science provides infrastructure support for the radiotracer chemistry and imaging facilities at Brookhaven Lab. Brain-imaging techniques such as PET are a direct outgrowth of DOE's long-standing investment in basic research in chemistry, physics, and nuclear medicine.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>