Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep brain stimulation shows promising results for unipolar and bipolar depression

03.01.2012
A new study shows that deep brain stimulation (DBS) is a safe and effective intervention for treatment-resistant depression in patients with either unipolar major depressive disorder (MDD) or bipolar ll disorder (BP). The study was published Online First by Archives of General Psychiatry, one of the JAMA/Archives journals.

The study was led by Helen S. Mayberg, MD, professor in the Departments of Psychiatry and Behavioral Sciences and Neurology at Emory University School of Medicine, with co-investigators Paul E. Holtzheimer, MD, lead psychiatrist and now associate professor and director of the Mood Disorders Service, Dartmouth Medical School, and neurosurgeon Robert E. Gross, MD, PhD, associate professor in the Departments of Neurosurgery and Neurology at Emory. Gross served as chief neurosurgeon for the study.

"Depression is a serious and debilitating medical illness," says Mayberg. "When we found that the potential for effective and sustained antidepressant response with DBS for patients with otherwise treatment resistant major depressive disorder was high, the next step was to determine if patients with intractable bipolar depression could also be successfully treated."

An earlier study by Mayberg done in Toronto in collaboration with scientists at Toronto Western Hospital, University Health Network and Emory, was the first to show such results for patients with treatment-resistant major depressive disorder. Mayberg conducted this new expanded trial at Emory to include patients with bipolar ll disorder.

Bipolar spectrum disorder, sometimes referred to as manic-depression, is characterized by bouts of mania or hypomania alternating between episodes of depression. Although people with bipolar ll disorder do not have full manic episodes, depressive episodes are frequent and intense, and there is a high risk of suicide. A major challenge in treating bipolar depression is that many antidepressant medications may cause patients to "switch" into a hypomanic or manic episode.

DBS uses high-frequency electrical stimulation targeted to a predefined area of the brain specific to the particular neuropsychiatric disorder. Here, each study participant was implanted with two thin wire electrodes, one on each side of the brain. The other end of each wire was connected under the skin of the patient's neck to a pulse generator implanted in the chest – similar to a pacemaker – that directs the electrical current.

Study participants received single-blind stimulation for four weeks (patients did not know if the DBS system was on or off), followed by active stimulation for 24 weeks. Patients were evaluated for up to two years following onset of active stimulation. Seventeen patients were enrolled in the study.

A significant decrease in depression and increase in function were associated with continuing stimulation. Remission and response rates were 18 percent and 41 percent after 24 weeks; 36 percent and 36 percent after one year and 58 percent and 92 percent after two years of active stimulation. Patients who achieved remission did not experience a spontaneous relapse. Efficacy was similar for Major Depressive Disorder and Bi-Polar patients, and no participant experienced a manic or hypomanic episode.

Mayberg and her colleagues continue to refine this intervention. Current studies include demographic, clinical and imaging predictors of response and remission, and introduction of psychotherapeutic rehabilitation. Why and how this treatment works is the primary focus of ongoing research.

"Most of these patients have been in a depressed state for many years and are disabled and isolated," says Holtzheimer. "As their depression improves, they need a process to help them achieve full recovery that includes integration back into society.

"We hope to optimize the rate of improvement for these patients by using a model of care that provides psychotherapeutic rehabilitation built on evidence-based psychotherapy but tailored to the specific individual's situation."

The study was funded by grants from the Dana Foundation, Stanley Medical Research Institute, Woodruff Foundation, and Emory Healthcare. The study was performed under a physician sponsored IDE to Dr Mayberg (G060028 and registered at Clinicaltrials.gov ID#: NCT00367003). Investigational DBS devices were donated by St. Jude Medical Neuromodulation Inc., which was otherwise uninvolved in the study.

Holtzheimer has received grant funding from the Greenwall Foundation, NARSAD, National Institutes of Health Loan Repayment Program and National Institute of Mental Health (NIMH); he has received consulting fees from St. Jude Medical Neuromodulation.

Gross has received consulting fees from St. Jude Medical Neuromodulation, Boston Scientific and Bayer Healthcare and he has equity in Neurovista.

Mayberg has a consulting agreement with St. Jude Medical Neuromodulation, which has licensed her intellectual property to develop SCC DBS for the treatment of severed depression.

The terms of these arrangements have been reviewed and approved by Emory University in accordance with their conflict-of-interest policies.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>