Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep brain stimulation shows promising results for unipolar and bipolar depression

03.01.2012
A new study shows that deep brain stimulation (DBS) is a safe and effective intervention for treatment-resistant depression in patients with either unipolar major depressive disorder (MDD) or bipolar ll disorder (BP). The study was published Online First by Archives of General Psychiatry, one of the JAMA/Archives journals.

The study was led by Helen S. Mayberg, MD, professor in the Departments of Psychiatry and Behavioral Sciences and Neurology at Emory University School of Medicine, with co-investigators Paul E. Holtzheimer, MD, lead psychiatrist and now associate professor and director of the Mood Disorders Service, Dartmouth Medical School, and neurosurgeon Robert E. Gross, MD, PhD, associate professor in the Departments of Neurosurgery and Neurology at Emory. Gross served as chief neurosurgeon for the study.

"Depression is a serious and debilitating medical illness," says Mayberg. "When we found that the potential for effective and sustained antidepressant response with DBS for patients with otherwise treatment resistant major depressive disorder was high, the next step was to determine if patients with intractable bipolar depression could also be successfully treated."

An earlier study by Mayberg done in Toronto in collaboration with scientists at Toronto Western Hospital, University Health Network and Emory, was the first to show such results for patients with treatment-resistant major depressive disorder. Mayberg conducted this new expanded trial at Emory to include patients with bipolar ll disorder.

Bipolar spectrum disorder, sometimes referred to as manic-depression, is characterized by bouts of mania or hypomania alternating between episodes of depression. Although people with bipolar ll disorder do not have full manic episodes, depressive episodes are frequent and intense, and there is a high risk of suicide. A major challenge in treating bipolar depression is that many antidepressant medications may cause patients to "switch" into a hypomanic or manic episode.

DBS uses high-frequency electrical stimulation targeted to a predefined area of the brain specific to the particular neuropsychiatric disorder. Here, each study participant was implanted with two thin wire electrodes, one on each side of the brain. The other end of each wire was connected under the skin of the patient's neck to a pulse generator implanted in the chest – similar to a pacemaker – that directs the electrical current.

Study participants received single-blind stimulation for four weeks (patients did not know if the DBS system was on or off), followed by active stimulation for 24 weeks. Patients were evaluated for up to two years following onset of active stimulation. Seventeen patients were enrolled in the study.

A significant decrease in depression and increase in function were associated with continuing stimulation. Remission and response rates were 18 percent and 41 percent after 24 weeks; 36 percent and 36 percent after one year and 58 percent and 92 percent after two years of active stimulation. Patients who achieved remission did not experience a spontaneous relapse. Efficacy was similar for Major Depressive Disorder and Bi-Polar patients, and no participant experienced a manic or hypomanic episode.

Mayberg and her colleagues continue to refine this intervention. Current studies include demographic, clinical and imaging predictors of response and remission, and introduction of psychotherapeutic rehabilitation. Why and how this treatment works is the primary focus of ongoing research.

"Most of these patients have been in a depressed state for many years and are disabled and isolated," says Holtzheimer. "As their depression improves, they need a process to help them achieve full recovery that includes integration back into society.

"We hope to optimize the rate of improvement for these patients by using a model of care that provides psychotherapeutic rehabilitation built on evidence-based psychotherapy but tailored to the specific individual's situation."

The study was funded by grants from the Dana Foundation, Stanley Medical Research Institute, Woodruff Foundation, and Emory Healthcare. The study was performed under a physician sponsored IDE to Dr Mayberg (G060028 and registered at Clinicaltrials.gov ID#: NCT00367003). Investigational DBS devices were donated by St. Jude Medical Neuromodulation Inc., which was otherwise uninvolved in the study.

Holtzheimer has received grant funding from the Greenwall Foundation, NARSAD, National Institutes of Health Loan Repayment Program and National Institute of Mental Health (NIMH); he has received consulting fees from St. Jude Medical Neuromodulation.

Gross has received consulting fees from St. Jude Medical Neuromodulation, Boston Scientific and Bayer Healthcare and he has equity in Neurovista.

Mayberg has a consulting agreement with St. Jude Medical Neuromodulation, which has licensed her intellectual property to develop SCC DBS for the treatment of severed depression.

The terms of these arrangements have been reviewed and approved by Emory University in accordance with their conflict-of-interest policies.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>