Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decreasing font size enhances reading comprehension among children who have already developed proficient reading skills

10.07.2014

The study found that for fifth-grade students who have already developed proficient reading skills, decreasing the font size enhanced their reading comprehension, whereas for second-grade students who are still acquiring reading skills, decreasing the font size actually impaired their comprehension

A new study performed by Haifa University shows that decreasing the font size helps to improve reading comprehension among fifth graders who have mastered the technical skills of reading.

“Adding cognitive perpetual load in reading actually seems to improve comprehension,” said Prof. Tami Katzir, Head of the Department of Learning Disabilities at Haifa University and a researcher at the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities at the university, who led the study. 

There is a psychological-cognitive approach that claims that imposing difficulties that form cognitive load - such as deleting letters from words, may enhance performance on subsequent performance such as recall.

In the domain of reading, the hypothesis was that creating  a "desirable" difficulty by decreasing the font size, reducing line spacing and increasing line length - may actually enhances the ability to learn.

Few studies have been performed in this area, and these focused specifically on adults, yielding contradictory results.

In this study, performed by Prof. Katzir with Shirley Hershko and Dr. Vered Halamish, the researchers sought to determine whether introducing difficulties in text presentation may improves comprehension in second as well as fifth graders.

According to Prof. Katzir, it is important to test these two age groups because second graders are still acquiring the technical skills of reading, whereas fifth graders can already read fluently.

Each group consisted of forty-five children. The children were asked to read texts, and they were later asked related reading comprehension questions. Font size, line spacing and line length were manipulated.

The findings showed the decreasing font size and line length parameters impaired comprehension of second graders who are still learning to read and thus not fluent readers in standard form (the change in spacing had no effect) - whereas comprehension among fifth graders actually improved when the font size was significantly decreased (changes to line length and line spacing had no effect).

According to the researchers, a possible explanation is that the difficulty, which requires the reader to concentrate and read slowly — even to reread the same line several times — is what ultimately improves their reading comprehension. 

“This study demonstrates the difference between children at different stages of reading proficiency, and it is important to understand that difficulty impairs comprehension at one stage, while at another it actually facilitates comprehension. After mastering reading skills, an effective way to improve comprehension could be to decrease the text’s font size. In the age of digital media this findings have important applied applications Prof.. Katzir concluded.

 

Division of Communications and Media Relations  |  University of Haifa

Ilan +972-4-8240204                  

      +972-528-666404   

Itai  +972-4-8288722                 

       + 972-502-42780                        

Ela +972-4-8240092

     +972-528-666432               

Media Relations | University of Haifa

Further reports about: Haifa Learning Relations cognitive difference explanation parameters

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>