Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decreasing font size enhances reading comprehension among children who have already developed proficient reading skills

10.07.2014

The study found that for fifth-grade students who have already developed proficient reading skills, decreasing the font size enhanced their reading comprehension, whereas for second-grade students who are still acquiring reading skills, decreasing the font size actually impaired their comprehension

A new study performed by Haifa University shows that decreasing the font size helps to improve reading comprehension among fifth graders who have mastered the technical skills of reading.

“Adding cognitive perpetual load in reading actually seems to improve comprehension,” said Prof. Tami Katzir, Head of the Department of Learning Disabilities at Haifa University and a researcher at the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities at the university, who led the study. 

There is a psychological-cognitive approach that claims that imposing difficulties that form cognitive load - such as deleting letters from words, may enhance performance on subsequent performance such as recall.

In the domain of reading, the hypothesis was that creating  a "desirable" difficulty by decreasing the font size, reducing line spacing and increasing line length - may actually enhances the ability to learn.

Few studies have been performed in this area, and these focused specifically on adults, yielding contradictory results.

In this study, performed by Prof. Katzir with Shirley Hershko and Dr. Vered Halamish, the researchers sought to determine whether introducing difficulties in text presentation may improves comprehension in second as well as fifth graders.

According to Prof. Katzir, it is important to test these two age groups because second graders are still acquiring the technical skills of reading, whereas fifth graders can already read fluently.

Each group consisted of forty-five children. The children were asked to read texts, and they were later asked related reading comprehension questions. Font size, line spacing and line length were manipulated.

The findings showed the decreasing font size and line length parameters impaired comprehension of second graders who are still learning to read and thus not fluent readers in standard form (the change in spacing had no effect) - whereas comprehension among fifth graders actually improved when the font size was significantly decreased (changes to line length and line spacing had no effect).

According to the researchers, a possible explanation is that the difficulty, which requires the reader to concentrate and read slowly — even to reread the same line several times — is what ultimately improves their reading comprehension. 

“This study demonstrates the difference between children at different stages of reading proficiency, and it is important to understand that difficulty impairs comprehension at one stage, while at another it actually facilitates comprehension. After mastering reading skills, an effective way to improve comprehension could be to decrease the text’s font size. In the age of digital media this findings have important applied applications Prof.. Katzir concluded.

 

Division of Communications and Media Relations  |  University of Haifa

Ilan +972-4-8240204                  

      +972-528-666404   

Itai  +972-4-8288722                 

       + 972-502-42780                        

Ela +972-4-8240092

     +972-528-666432               

Media Relations | University of Haifa

Further reports about: Haifa Learning Relations cognitive difference explanation parameters

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>