Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decreasing font size enhances reading comprehension among children who have already developed proficient reading skills

10.07.2014

The study found that for fifth-grade students who have already developed proficient reading skills, decreasing the font size enhanced their reading comprehension, whereas for second-grade students who are still acquiring reading skills, decreasing the font size actually impaired their comprehension

A new study performed by Haifa University shows that decreasing the font size helps to improve reading comprehension among fifth graders who have mastered the technical skills of reading.

“Adding cognitive perpetual load in reading actually seems to improve comprehension,” said Prof. Tami Katzir, Head of the Department of Learning Disabilities at Haifa University and a researcher at the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities at the university, who led the study. 

There is a psychological-cognitive approach that claims that imposing difficulties that form cognitive load - such as deleting letters from words, may enhance performance on subsequent performance such as recall.

In the domain of reading, the hypothesis was that creating  a "desirable" difficulty by decreasing the font size, reducing line spacing and increasing line length - may actually enhances the ability to learn.

Few studies have been performed in this area, and these focused specifically on adults, yielding contradictory results.

In this study, performed by Prof. Katzir with Shirley Hershko and Dr. Vered Halamish, the researchers sought to determine whether introducing difficulties in text presentation may improves comprehension in second as well as fifth graders.

According to Prof. Katzir, it is important to test these two age groups because second graders are still acquiring the technical skills of reading, whereas fifth graders can already read fluently.

Each group consisted of forty-five children. The children were asked to read texts, and they were later asked related reading comprehension questions. Font size, line spacing and line length were manipulated.

The findings showed the decreasing font size and line length parameters impaired comprehension of second graders who are still learning to read and thus not fluent readers in standard form (the change in spacing had no effect) - whereas comprehension among fifth graders actually improved when the font size was significantly decreased (changes to line length and line spacing had no effect).

According to the researchers, a possible explanation is that the difficulty, which requires the reader to concentrate and read slowly — even to reread the same line several times — is what ultimately improves their reading comprehension. 

“This study demonstrates the difference between children at different stages of reading proficiency, and it is important to understand that difficulty impairs comprehension at one stage, while at another it actually facilitates comprehension. After mastering reading skills, an effective way to improve comprehension could be to decrease the text’s font size. In the age of digital media this findings have important applied applications Prof.. Katzir concluded.

 

Division of Communications and Media Relations  |  University of Haifa

Ilan +972-4-8240204                  

      +972-528-666404   

Itai  +972-4-8288722                 

       + 972-502-42780                        

Ela +972-4-8240092

     +972-528-666432               

Media Relations | University of Haifa

Further reports about: Haifa Learning Relations cognitive difference explanation parameters

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>