Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering Hidden Code Reveals Brain Activity

29.03.2011
Mathematical Sequence Strengthens fMRI Data, Penn Study Shows

By combining sophisticated mathematical techniques more commonly used by spies instead of scientists with the power and versatility of functional magnetic resonance imaging (fMRI), a Penn neurologist has developed a new approach for studying the inner workings of the brain.

A hidden pattern is encoded in the seemingly random order of things presented to a human subject, which the brain reveals when observed with fMRI. The research is published in the journal NeuroImage.

University of Pennsylvania scientists have shown that the mathematics used to find an efficient route through a complicated, connected network can be used to decode how the brain represents information.

Geoffrey K. Aguirre, MD, Assistant Professor of Neurology at the University of Pennsylvania School of Medicine, says “the same math that could break into your car can be used to crack the brain’s codes.” It’s called a de Bruijn sequence, which is a set or “alphabet” of things (letters, pictures, sounds) in a cyclic order such that every possible “word” or combination of things occurs only once. De Bruijn sequences are what mathematicians call “pseudo-random” because they appear to be a confused jumble but actually contain an underlying structure. To break into a car protected by an electronic lock with a five-digit numerical keycode, for example, a thief could try every possible combination. However, such a brute-force technique is time-consuming because it involves a great deal of repetition. But a de Bruijn sequence uses “every possible combination squeezed together,” explains Aguirre. The overlapping combinations encode a pattern scientists can observe in brain activity using fMRI, revealing how nerve cells work to represent the world.

Breaking Codes in Brain Studies
This approach measures how the order of things changes brain responses. Do you see a photo of your brother differently when it follows a picture of your sister? Aguirre says, “Many neuroscience experiments use the context and order of sights, sounds, words, and feelings to reveal how the nervous system is organized”

Previous experiments have presented information to study participants in more or less completely random order. This can be inefficient and inaccurate, making it difficult to discern important patterns and correlations between stimuli and neural responses. “We use the de Bruijn sequence to design the experiment,” Aguirre says. “It tells us how to present things to the subject. By presenting a series of faces in different combinations and orders, as dictated by the de Bruijn sequence, it’s possible to measure the brain response to each face individually.”

Beating the Blood Flow Problem
Aguirre’s new algorithm for creating de Bruijn sequences also helps correct an important limitation of fMRI, which works by measuring changes in brain blood flow. “It takes a little while for the blood flow changes to catch up with the brain response,” Aguirre says. “By creating these sequences in a special way that accounts for the slower blood flow response, experiments are many times more powerful than before.”

“The amazing thing is the person in the experiment just sees random pictures,” Aguirre notes. “But in fact, we’re hiding in this seemingly random sequence a signal that’s invisible to the person but can be decoded by the MRI scanner. We can measure the nerve cells’ response to that hidden pattern and then use that to understand how the brain is representing information.”

Aguirre’s unique marriage of advanced mathematics with the latest neuroimaging techniques promises to both open up new areas of research and improve current experimental designs in the study of the brain. The next step is to apply the new algorithm to actual fMRI studies in one of Aguirre’s special research areas, visual perception and representation in the brain.

For More Information
Aguirre, G.K., et al., de Bruijn cycles for neural decoding, NeuroImage (2011), doi:10.1016/j.neuro- image.2011.02.005

http://www.cfn.upenn.edu/aguirre/wiki/public:de_bruijn

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania – recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>