Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering Hidden Code Reveals Brain Activity

29.03.2011
Mathematical Sequence Strengthens fMRI Data, Penn Study Shows

By combining sophisticated mathematical techniques more commonly used by spies instead of scientists with the power and versatility of functional magnetic resonance imaging (fMRI), a Penn neurologist has developed a new approach for studying the inner workings of the brain.

A hidden pattern is encoded in the seemingly random order of things presented to a human subject, which the brain reveals when observed with fMRI. The research is published in the journal NeuroImage.

University of Pennsylvania scientists have shown that the mathematics used to find an efficient route through a complicated, connected network can be used to decode how the brain represents information.

Geoffrey K. Aguirre, MD, Assistant Professor of Neurology at the University of Pennsylvania School of Medicine, says “the same math that could break into your car can be used to crack the brain’s codes.” It’s called a de Bruijn sequence, which is a set or “alphabet” of things (letters, pictures, sounds) in a cyclic order such that every possible “word” or combination of things occurs only once. De Bruijn sequences are what mathematicians call “pseudo-random” because they appear to be a confused jumble but actually contain an underlying structure. To break into a car protected by an electronic lock with a five-digit numerical keycode, for example, a thief could try every possible combination. However, such a brute-force technique is time-consuming because it involves a great deal of repetition. But a de Bruijn sequence uses “every possible combination squeezed together,” explains Aguirre. The overlapping combinations encode a pattern scientists can observe in brain activity using fMRI, revealing how nerve cells work to represent the world.

Breaking Codes in Brain Studies
This approach measures how the order of things changes brain responses. Do you see a photo of your brother differently when it follows a picture of your sister? Aguirre says, “Many neuroscience experiments use the context and order of sights, sounds, words, and feelings to reveal how the nervous system is organized”

Previous experiments have presented information to study participants in more or less completely random order. This can be inefficient and inaccurate, making it difficult to discern important patterns and correlations between stimuli and neural responses. “We use the de Bruijn sequence to design the experiment,” Aguirre says. “It tells us how to present things to the subject. By presenting a series of faces in different combinations and orders, as dictated by the de Bruijn sequence, it’s possible to measure the brain response to each face individually.”

Beating the Blood Flow Problem
Aguirre’s new algorithm for creating de Bruijn sequences also helps correct an important limitation of fMRI, which works by measuring changes in brain blood flow. “It takes a little while for the blood flow changes to catch up with the brain response,” Aguirre says. “By creating these sequences in a special way that accounts for the slower blood flow response, experiments are many times more powerful than before.”

“The amazing thing is the person in the experiment just sees random pictures,” Aguirre notes. “But in fact, we’re hiding in this seemingly random sequence a signal that’s invisible to the person but can be decoded by the MRI scanner. We can measure the nerve cells’ response to that hidden pattern and then use that to understand how the brain is representing information.”

Aguirre’s unique marriage of advanced mathematics with the latest neuroimaging techniques promises to both open up new areas of research and improve current experimental designs in the study of the brain. The next step is to apply the new algorithm to actual fMRI studies in one of Aguirre’s special research areas, visual perception and representation in the brain.

For More Information
Aguirre, G.K., et al., de Bruijn cycles for neural decoding, NeuroImage (2011), doi:10.1016/j.neuro- image.2011.02.005

http://www.cfn.upenn.edu/aguirre/wiki/public:de_bruijn

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania – recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>