Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering Hidden Code Reveals Brain Activity

29.03.2011
Mathematical Sequence Strengthens fMRI Data, Penn Study Shows

By combining sophisticated mathematical techniques more commonly used by spies instead of scientists with the power and versatility of functional magnetic resonance imaging (fMRI), a Penn neurologist has developed a new approach for studying the inner workings of the brain.

A hidden pattern is encoded in the seemingly random order of things presented to a human subject, which the brain reveals when observed with fMRI. The research is published in the journal NeuroImage.

University of Pennsylvania scientists have shown that the mathematics used to find an efficient route through a complicated, connected network can be used to decode how the brain represents information.

Geoffrey K. Aguirre, MD, Assistant Professor of Neurology at the University of Pennsylvania School of Medicine, says “the same math that could break into your car can be used to crack the brain’s codes.” It’s called a de Bruijn sequence, which is a set or “alphabet” of things (letters, pictures, sounds) in a cyclic order such that every possible “word” or combination of things occurs only once. De Bruijn sequences are what mathematicians call “pseudo-random” because they appear to be a confused jumble but actually contain an underlying structure. To break into a car protected by an electronic lock with a five-digit numerical keycode, for example, a thief could try every possible combination. However, such a brute-force technique is time-consuming because it involves a great deal of repetition. But a de Bruijn sequence uses “every possible combination squeezed together,” explains Aguirre. The overlapping combinations encode a pattern scientists can observe in brain activity using fMRI, revealing how nerve cells work to represent the world.

Breaking Codes in Brain Studies
This approach measures how the order of things changes brain responses. Do you see a photo of your brother differently when it follows a picture of your sister? Aguirre says, “Many neuroscience experiments use the context and order of sights, sounds, words, and feelings to reveal how the nervous system is organized”

Previous experiments have presented information to study participants in more or less completely random order. This can be inefficient and inaccurate, making it difficult to discern important patterns and correlations between stimuli and neural responses. “We use the de Bruijn sequence to design the experiment,” Aguirre says. “It tells us how to present things to the subject. By presenting a series of faces in different combinations and orders, as dictated by the de Bruijn sequence, it’s possible to measure the brain response to each face individually.”

Beating the Blood Flow Problem
Aguirre’s new algorithm for creating de Bruijn sequences also helps correct an important limitation of fMRI, which works by measuring changes in brain blood flow. “It takes a little while for the blood flow changes to catch up with the brain response,” Aguirre says. “By creating these sequences in a special way that accounts for the slower blood flow response, experiments are many times more powerful than before.”

“The amazing thing is the person in the experiment just sees random pictures,” Aguirre notes. “But in fact, we’re hiding in this seemingly random sequence a signal that’s invisible to the person but can be decoded by the MRI scanner. We can measure the nerve cells’ response to that hidden pattern and then use that to understand how the brain is representing information.”

Aguirre’s unique marriage of advanced mathematics with the latest neuroimaging techniques promises to both open up new areas of research and improve current experimental designs in the study of the brain. The next step is to apply the new algorithm to actual fMRI studies in one of Aguirre’s special research areas, visual perception and representation in the brain.

For More Information
Aguirre, G.K., et al., de Bruijn cycles for neural decoding, NeuroImage (2011), doi:10.1016/j.neuro- image.2011.02.005

http://www.cfn.upenn.edu/aguirre/wiki/public:de_bruijn

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania – recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>