Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Data smashing' could unshackle automated discovery

10.10.2014

A little known secret in data mining is that simply feeding raw data into a data analysis algorithm is unlikely to produce meaningful results, say the authors of a new Cornell University study.

From recognizing speech to identifying unusual stars, new discoveries often begin with comparison of data streams to find connections and spot outliers.

But most data comparison algorithms today have one major weakness – somewhere, they rely on a human expert to specify what aspects of the data are relevant for comparison, and what aspects aren't. But experts aren't keeping pace with the growing amounts and complexities of big data.

Cornell computing researchers have come up with a new principle they call "data smashing" for estimating the similarities between streams of arbitrary data without human intervention, and without access to the data sources. Hod Lipson, associate professor of mechanical engineering and computing and information science, and Ishanu Chattopadhyay, a former postdoctoral associate with Lipson and now at the University of Chicago, have described their method in Royal Society Interface, Oct. 1.

Data smashing is based on a new way to compare data streams. The process involves two steps. First, the data streams are algorithmically "smashed" to "annihilate" the information in each other. Then, the process measures what information remained after the collision. The more information remained, the less likely the streams originated in the same source.

Data smashing principles may open the door to understanding increasingly complex observations, especially when experts do not know what to look for, according to the researchers.

The authors demonstrated the application of their principle to data from real-world problems, including the disambiguation of electroencephalograph patterns from epileptic seizure patients; detection of anomalous cardiac activity from heart recordings; and classification of astronomical objects from raw photometry.

In all cases and without access to original domain knowledge, the researchers demonstrated performance on par with the accuracy of specialized algorithms and heuristics devised by experts.

###

The work in the paper, "Data smashing: Uncovering lurking order in data," was supported by the Defense Advanced Research Projects Agency and the U.S. Army Research Office.

Study: http://rsif.royalsocietypublishing.org/content/11/101/20140826.full

Syl Kacapyr | Eurek Alert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>