Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Data smashing' could unshackle automated discovery

10.10.2014

A little known secret in data mining is that simply feeding raw data into a data analysis algorithm is unlikely to produce meaningful results, say the authors of a new Cornell University study.

From recognizing speech to identifying unusual stars, new discoveries often begin with comparison of data streams to find connections and spot outliers.

But most data comparison algorithms today have one major weakness – somewhere, they rely on a human expert to specify what aspects of the data are relevant for comparison, and what aspects aren't. But experts aren't keeping pace with the growing amounts and complexities of big data.

Cornell computing researchers have come up with a new principle they call "data smashing" for estimating the similarities between streams of arbitrary data without human intervention, and without access to the data sources. Hod Lipson, associate professor of mechanical engineering and computing and information science, and Ishanu Chattopadhyay, a former postdoctoral associate with Lipson and now at the University of Chicago, have described their method in Royal Society Interface, Oct. 1.

Data smashing is based on a new way to compare data streams. The process involves two steps. First, the data streams are algorithmically "smashed" to "annihilate" the information in each other. Then, the process measures what information remained after the collision. The more information remained, the less likely the streams originated in the same source.

Data smashing principles may open the door to understanding increasingly complex observations, especially when experts do not know what to look for, according to the researchers.

The authors demonstrated the application of their principle to data from real-world problems, including the disambiguation of electroencephalograph patterns from epileptic seizure patients; detection of anomalous cardiac activity from heart recordings; and classification of astronomical objects from raw photometry.

In all cases and without access to original domain knowledge, the researchers demonstrated performance on par with the accuracy of specialized algorithms and heuristics devised by experts.

###

The work in the paper, "Data smashing: Uncovering lurking order in data," was supported by the Defense Advanced Research Projects Agency and the U.S. Army Research Office.

Study: http://rsif.royalsocietypublishing.org/content/11/101/20140826.full

Syl Kacapyr | Eurek Alert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>