Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data contradict current recommendations for management of breast biopsy abnormalities

30.01.2014
Contrary to existing understanding, long-term follow-up of patients with two types of breast tissue abnormalities suggests that both types of abnormalities have the same potential to progress to breast cancer, according to a study published in Cancer Prevention Research, a journal of the American Association for Cancer Research. Findings from this study could improve clinical management of patients with breast tissue abnormalities.

This study challenges current understanding that atypical ductal hyperplasia (ADH), a type of breast tissue abnormality, leads to breast cancer in the same breast while atypical lobular hyperplasia (ALH), another type of breast tissue abnormality, may not be a direct precursor of breast cancer, but may indicate equal risk of breast cancer across both breasts.

"Ours is the first report with sufficient numbers of both types of atypia and long-term follow-up for breast cancers that compared the side of breast that had atypia with the side of breast in which cancer arose and the timeframe when the cancers developed," said Lynn C. Hartmann, M.D., professor of oncology at the Mayo Clinic in Rochester, Minn. "We showed that even though the two types of atypia look different histologically, they behave quite similarly in terms of what happens to patients.

"More than a million American women have a breast biopsy with benign findings every year, and about 10 percent of these biopsies reveal atypical hyperplasia, a premalignant finding with a proliferation of abnormal cells, which have some but not all the features of a breast cancer," she added. "There are two types of atypical hyperplasia based on their microscopic appearance—ADH and ALH—and it has been thought that they behave differently.

"Most have considered ADH a direct precursor to breast cancer, arguing that it requires complete surgical excision while others have maintained that ALH serves as an indicator of heightened and equal risk of breast cancer across both breasts and does not need complete surgical removal," explained Hartmann. "Moreover, some experts have argued that women with atypia develop 'better risk' breast cancers, meaning low-grade cancers with a good prognosis."

Hartmann and colleagues identified 698 women from the Mayo Benign Breast Disease Cohort who had biopsy-confirmed atypia; 330 of them had ADH, 327 had ALH, and 32 had both. The investigators followed these women for an average of 12.5 years, and 143 of them developed breast cancer.

The investigators found that the ratio of breast cancer in the same breast in which the atypia was detected versus in the opposite breast was the same, 2:1, for both ADH and ALH.

A similar number of women with either ADH or ALH developed breast cancer in the same breast within five years of diagnosis, which led the authors to suggest that, like ADH, ALH may also be a precursor in addition to being a risk indicator.

Contrary to current understanding that ALH might mostly lead to the development of lobular cancer, this study found that ALH predominantly resulted in ductal cancer of the breast, which is a similar outcome as with ADH. Both ADH and ALH resulted in invasive ductal cancers, of which 69 percent were of intermediate or high grade. About 25 percent of them had spread to the lymph nodes. The pattern of cancers in these patients resembled those seen in the general population.

"If a woman has a breast biopsy and if it shows atypia, it might be wise for her to be seen at a breast center for recommendations about surveillance and preventive therapy options," said Hartmann. "We hope these data will further help clinicians make informed decisions for breast atypia management strategies."

This study was funded by the Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE) grant from the National Institutes of Health and Susan G. Komen. Hartmann has declared no conflicts of interest.

Follow the AACR on Twitter: @AACR

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

To interview Lynn Hartmann, contact Yusuf "Joe" Dangor at dangor.yusuf@mayo.edu or 507-284-5005. For other inquiries, contact Jeremy Moore at jeremy.moore@aacr.org or 215-446-7109.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: ADH Cancer breast biopsy breast cancer breast tissue cancer research lymph node

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>