Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers describe how the cholera bacteria becomes infectious

12.02.2010
In a new study, Dartmouth researchers describe the structure of a protein called ToxT that controls the virulent nature of Vibrio cholerae, the bacteria that causes cholera. Buried within ToxT, the researchers were surprised to find a fatty acid that appears to inhibit ToxT, which prevents the bacteria from causing cholera. Cholera, which causes acute diarrhea, can be life threatening, and, according to the World Health Organization, cholera remains a serious threat to global health.

Doctors have known that bile, found in the intestine, inhibits the expression of the virulence genes in V. cholerae, but until now, the mechanism behind this was not completely understood. This study provides a direct link between the environment of the gut and the regulation of virulence genes, and it also identifies the regulatory molecule.

"Finding a fatty acid in the structure was quite a surprise," says F. Jon Kull, associate professor of chemistry at Dartmouth and senior author on the paper. Kull is also a 1988 graduate of Dartmouth. "The exciting thing about this finding is that we might be able to use a small, natural molecule to treat and/or prevent cholera. We will also use the structure of the fatty acid as a framework to try and design a small molecule inhibitor of ToxT."

The study, "Structure of Vibrio cholerae ToxT reveals mechanism for fatty acid regulation of virulence genes," appeared in the online edition of the Proceedings of the National Academy of Sciences during the week of February 1.

Kull's co-authors on the paper are Michael Lowden and Maria Pellegrini with the Department of Chemistry at Dartmouth; Michael Chiorazzo, a summer undergraduate research fellow; and Karen Skorupski and Ronald Taylor with the Department of Microbiology and Immunology at Dartmouth Medical School.

The researchers used X-ray crystallography to determine the structure of ToxT. The process involves taking DNA from V. cholerae and using non-pathogenic E. coli bacteria to produce large amounts of the target protein, in this case, ToxT. Once protein has been purified, it is concentrated and crystallized. Then the crystal, which is an ordered array of protein molecules, is subjected to a powerful X-ray beam. The pattern of diffracted X-rays is collected on a detector and then analyzed using mathematical algorithms, eventually revealing the atomic structure of the protein.

Co-author Taylor also notes that "The results of the study are exciting from the points of view of both the mechanistic aspect of the complex regulation of V. cholerae virulence gene expression and the potential medical impact as we now move forward to apply this new knowledge to influence this mechanism to control infection in humans."

This study was funded by the National Institutes of Health, Institute of Allergy and Infectious Diseases.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>