Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangers of Exposure to "White Light"

13.09.2011
New international study shows: “White” light suppresses the body's production of melatonin more than orange light

Exposure to the light of white LED bulbs, it turns out, suppresses melatonin 5 times more than exposure to the light of High Pressure Sodium bulbs that give off an orange-yellow light. “Just as there are regulations and standards for ‘classic’ pollutants, there should also be regulations and rules for the pollution stemming from artificial light at night,” says Prof. Abraham Haim of the University of Haifa.

“White” light bulbs that emit light at shorter wavelengths are greater suppressors of the body’s production of melatonin than bulbs emitting orange-yellow light, a new international study has revealed.

Melatonin is a compound that adjusts our biological clock and is known for its anti-oxidant and anti-cancerous properties.

The study investigated the influence of different types of bulbs on “light pollution” and the suppression of melatonin, with the researchers recommending several steps that should be taken to balance the need to save energy and protecting public health.

“Just as there are regulations and standards for ‘classic’ pollutants, there should also be regulations and rules for pollution stemming from artificial light at night,” says Prof. Abraham Haim, head of the Center for Interdisciplinary Chronobiological Research at the University of Haifa and the Israeli partner in the research.

The study, titled "Limiting the impact of light pollution on human health, environment and stellar visibility" by Fabio Falchi, Pierantonio Cinzano, Christopher D. Elvidge, David M. Keith and Abraham Haim, was recently published in the Journal of Environmental Management.

The fact that “white” artificial light (which is actually blue light on the spectrum, emitted at wavelengths of between 440-500 nanometers) suppresses the production of melatonin in the brain’s pineal gland is already known. Also known is the fact that suppressing the production of melatonin, which is responsible, among other things, for the regulation of our biological clock, causes behavior disruptions and health problems.

In this study, conducted by astronomers, physicists and biologists from ISTIL- Light Pollution Science and Technology Institute in Italy, the National Geophysical Data Center in Boulder, Colorado, and the University of Haifa, researchers for the first time examined the differences in melatonin suppression in a various types of light bulbs, primarily those used for outdoor illumination, such as streetlights, road lighting, mall lighting and the like.

In the first, analytical part of the study, the researchers, relying on various data, calculated the wavelength and energy output of bulbs that are generally used for outdoor lighting. Next, they compared that information with existing research regarding melatonin suppression to determine the melatonin suppression level of each bulb type.

Taking into account the necessity for artificial lighting in cities, as well as the importance of energy-saving bulbs, the research team took as a reference point the level of melatonin suppression by a high-pressure sodium (HPS) bulb, a bulb that gives off orange-yellow light and is often used for street and road lighting, and compared the data from the other bulbs to that one.

From this comparison it emerged that the metal halide bulb, which gives off a white light and is used for stadium lighting, among other uses, suppresses melatonin at a rate more than 3 times greater than the HPS bulb, while the light-emitting diode (LED) bulb, which also gives off a white light, suppresses melatonin at a rate more than 5 times higher than the HPS bulb.

“The current migration from the now widely used sodium lamps to white lamps will increase melatonin suppression in humans and animals,” the researchers say.

The researchers make some concrete suggestions that could alter the situation without throwing our world into total darkness, but first and foremost, they assert that it is necessary to understand that artificial light creates “light pollution” that ought to be addressed in the realms of regulation and legislation.

Their first suggestion of course, is to limit the use of “white” light to those instances where it is absolutely necessary. Another suggestion is to adjust lampposts so that their light is not directed beyond the horizon, which would significantly reduce light pollution. They also advise against “over-lighting”, using only the amount of light needed for a task, and, of course, to simply turn off lighting when not in use - “Just like we all turn off the light when we leave the room. This is the first and primary way to save energy,” the researchers say.

“Most Italian regions have legislations to lower the impact of light pollution, but they still lack a regulation on the spectrum emitted by lamps. Unless legislation is updated soon, with the current trend toward sources as white LEDs, which emit a huge amount of blue light, we will enter a period of elevated negative effects of light at night on human health and environment. Lamp manufacturers cannot claim that they don’t know about the consequences of artificial light at night,” says Dr. Fabio Falchi of ISTIL.

“As a first step in Israel, for example, the Standards Institution of Israel should obligate bulb importers to state clearly on their packaging what wavelengths are produced by each bulb. If wavelength indeed influences melatonin production, this is information that needs to be brought to the public’s attention, so consumers can decide whether to buy this lighting or not,” Prof. Haim says.

Link: http://newmedia-eng.haifa.ac.il/?p=5516

For more information:
Rachel Feldman
Division of Marketing and Media
University of Haifa
press@univ.haifa.ac.il
+972-54-5352435

Rachel Feldman | Newswise Science News
Further information:
http://www.haifa.ac.il

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>