Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous storms peaking further north, south than in past

15.05.2014

New analysis of cyclones shows migration away from tropics and toward the poles in recent decades

Powerful, destructive tropical cyclones are now reaching their peak intensity farther from the equator and closer to the poles, according to a new study co-authored by an MIT scientist.


Satellite imagery of Typhoon Usagi, September 2013

Courtesy of the National Oceanic and Atmospheric Administration

The results of the study, published today in the journal Nature, show that over the last 30 years, tropical cyclones — also known as hurricanes or typhoons — are moving poleward at a rate of about 33 miles per decade in the Northern Hemisphere and 38 miles per decade in the Southern Hemisphere.

"The absolute value of the latitudes at which these storms reach their maximum intensity seems to be increasing over time, in most places," says Kerry Emanuel, an MIT professor and co-author of the new paper. "The trend is statistically significant at a pretty high level."

And while the scientists who conducted the study are still investigating the atmospheric mechanisms behind this change, the trend seems consistent with a warming climate.

"It may mean the thermodynamically favorable conditions for these storms are migrating poleward," adds Emanuel, the Cecil and Ida Green Professor of Earth and Planetary Sciences at MIT.

The implications are serious, since the movement of peak intensity means regions further north and south of the equator, which have not previously had to face many landfalls by violent cyclones, may now have greater exposure to these extreme weather events. That, in turn, could lead to "potentially profound consequences to life and property," the paper states. "Any related changes to positions where storms make landfall will have obvious effects on coastal residents and infrastructure."

Moving with the trade winds?

The paper, "The Poleward Migration of the Location of Tropical Cyclone Maximum Intensity," was co-written by Emanuel, James P. Kossin of the University of Wisconsin, and Gabriel A. Vecchi of the National Oceanic and Atmospheric Administration (NOAA).

To conduct the study, the scientists used international data from 1982 to 2012, collected by NOAA's National Climactic Data Center. They used the location of peak intensity of cyclones as a benchmark because it is a more consistent metric than statistics such as storm duration: The duration can be harder to estimate because of difficulties in establishing precisely when a storm should first be considered a tropical cyclone.

While there are regional differences in the poleward movement of cyclones, the fact that every ocean basin other than the northern Indian Ocean has experienced this change leads the researchers to suggest, in the paper, that this "migration away from the tropics is a global phenomenon."

However, Emanuel notes, the global mechanisms underlying the trend are a matter for further research.

"We think, but have not yet been able to establish, that this is connected to independently observed poleward expansion of the Hadley circulation," Emanuel says, referring to a large-scale pattern of global winds, which in recent years has also moved further poleward. The paper notes the potential impact of vertical wind shear, which inhibits cyclone formation; data suggests a decrease in wind shear in the tropics and an increase at higher latitudes.

Emanuel notes that researchers in the field are continuing to examine the links between storm migration and global warming. Over the past three decades, the incidence of cyclones in the tropics has actually diminished — because while tropical cyclones may become more intense in a warmer climate, it is actually more difficult to generate them.

Ocean temperatures between 82 and 86 degrees Fahrenheit seem to be "ideal for the genesis of tropical cyclones," Emanuel says, "and as that belt migrates poleward, which surely it must as the whole ocean warms, the tropical cyclone genesis regions might just move with it. But we have more work to do to nail it down."

###

Written by Peter Dizikes, MIT News Office

RELATED LINKS

Kerry Emanuel
http://eapsweb.mit.edu/people/kokey

MIT Department of Earth, Atmospheric and Planetary Sciences
http://eapsweb.mit.edu

MIT announces new initiative on environment
http://newsoffice.mit.edu/2014/mit-announces-new-initiative-environment-0508

Bigger storms ahead
http://newsoffice.mit.edu/2013/bigger-storms-ahead-global-warming-0708

Kimberly Allen | Eurek Alert!
Further information:
http://newsoffice.mit.edu/2014/study-dangerous-storms-peaking-further-north-south-past-0514

Further reports about: Atmospheric Earth Hemisphere MIT Massachusetts Ocean Planetary cyclones movement storms tropical tropics winds

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>