Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous storms peaking further north, south than in past

15.05.2014

New analysis of cyclones shows migration away from tropics and toward the poles in recent decades

Powerful, destructive tropical cyclones are now reaching their peak intensity farther from the equator and closer to the poles, according to a new study co-authored by an MIT scientist.


Satellite imagery of Typhoon Usagi, September 2013

Courtesy of the National Oceanic and Atmospheric Administration

The results of the study, published today in the journal Nature, show that over the last 30 years, tropical cyclones — also known as hurricanes or typhoons — are moving poleward at a rate of about 33 miles per decade in the Northern Hemisphere and 38 miles per decade in the Southern Hemisphere.

"The absolute value of the latitudes at which these storms reach their maximum intensity seems to be increasing over time, in most places," says Kerry Emanuel, an MIT professor and co-author of the new paper. "The trend is statistically significant at a pretty high level."

And while the scientists who conducted the study are still investigating the atmospheric mechanisms behind this change, the trend seems consistent with a warming climate.

"It may mean the thermodynamically favorable conditions for these storms are migrating poleward," adds Emanuel, the Cecil and Ida Green Professor of Earth and Planetary Sciences at MIT.

The implications are serious, since the movement of peak intensity means regions further north and south of the equator, which have not previously had to face many landfalls by violent cyclones, may now have greater exposure to these extreme weather events. That, in turn, could lead to "potentially profound consequences to life and property," the paper states. "Any related changes to positions where storms make landfall will have obvious effects on coastal residents and infrastructure."

Moving with the trade winds?

The paper, "The Poleward Migration of the Location of Tropical Cyclone Maximum Intensity," was co-written by Emanuel, James P. Kossin of the University of Wisconsin, and Gabriel A. Vecchi of the National Oceanic and Atmospheric Administration (NOAA).

To conduct the study, the scientists used international data from 1982 to 2012, collected by NOAA's National Climactic Data Center. They used the location of peak intensity of cyclones as a benchmark because it is a more consistent metric than statistics such as storm duration: The duration can be harder to estimate because of difficulties in establishing precisely when a storm should first be considered a tropical cyclone.

While there are regional differences in the poleward movement of cyclones, the fact that every ocean basin other than the northern Indian Ocean has experienced this change leads the researchers to suggest, in the paper, that this "migration away from the tropics is a global phenomenon."

However, Emanuel notes, the global mechanisms underlying the trend are a matter for further research.

"We think, but have not yet been able to establish, that this is connected to independently observed poleward expansion of the Hadley circulation," Emanuel says, referring to a large-scale pattern of global winds, which in recent years has also moved further poleward. The paper notes the potential impact of vertical wind shear, which inhibits cyclone formation; data suggests a decrease in wind shear in the tropics and an increase at higher latitudes.

Emanuel notes that researchers in the field are continuing to examine the links between storm migration and global warming. Over the past three decades, the incidence of cyclones in the tropics has actually diminished — because while tropical cyclones may become more intense in a warmer climate, it is actually more difficult to generate them.

Ocean temperatures between 82 and 86 degrees Fahrenheit seem to be "ideal for the genesis of tropical cyclones," Emanuel says, "and as that belt migrates poleward, which surely it must as the whole ocean warms, the tropical cyclone genesis regions might just move with it. But we have more work to do to nail it down."

###

Written by Peter Dizikes, MIT News Office

RELATED LINKS

Kerry Emanuel
http://eapsweb.mit.edu/people/kokey

MIT Department of Earth, Atmospheric and Planetary Sciences
http://eapsweb.mit.edu

MIT announces new initiative on environment
http://newsoffice.mit.edu/2014/mit-announces-new-initiative-environment-0508

Bigger storms ahead
http://newsoffice.mit.edu/2013/bigger-storms-ahead-global-warming-0708

Kimberly Allen | Eurek Alert!
Further information:
http://newsoffice.mit.edu/2014/study-dangerous-storms-peaking-further-north-south-past-0514

Further reports about: Atmospheric Earth Hemisphere MIT Massachusetts Ocean Planetary cyclones movement storms tropical tropics winds

More articles from Studies and Analyses:

nachricht R&D - Fit for future
28.04.2015 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Emotion recognition ability pays off
27.04.2015 | WHU - Otto Beisheim School of Management

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spray drying the precision particle under the virtual magnifying glass

Spray drying is a common manufacturing process, used in the production of ceramic granulate for technical components or dental prostheses as well as dissolvable medicinal substances, food additives and in the processing of milk into powder. Using computer simulation methodology developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM, a more comprehensible understanding can now be gained of the behavior of particles in solvent during the spray drying process. This allows powder and granulate manufacturers to specifically adjust the properties of their products while reducing waste.

Previously, it was unusual for granule and powder producers to use granulation simulations to improve their products. For new product development or process...

Im Focus: The random raman laser: A new light source for the microcosmos

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a...

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

 
Latest News

Expedition Genomics Lab: the mobile revolution in genetic analysis

06.05.2015 | Life Sciences

How noise changes the way the brain gets information

06.05.2015 | Life Sciences

A model approach for sustainable phosphorus recovery from wastewater

06.05.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>