Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous storms peaking further north, south than in past

15.05.2014

New analysis of cyclones shows migration away from tropics and toward the poles in recent decades

Powerful, destructive tropical cyclones are now reaching their peak intensity farther from the equator and closer to the poles, according to a new study co-authored by an MIT scientist.


Satellite imagery of Typhoon Usagi, September 2013

Courtesy of the National Oceanic and Atmospheric Administration

The results of the study, published today in the journal Nature, show that over the last 30 years, tropical cyclones — also known as hurricanes or typhoons — are moving poleward at a rate of about 33 miles per decade in the Northern Hemisphere and 38 miles per decade in the Southern Hemisphere.

"The absolute value of the latitudes at which these storms reach their maximum intensity seems to be increasing over time, in most places," says Kerry Emanuel, an MIT professor and co-author of the new paper. "The trend is statistically significant at a pretty high level."

And while the scientists who conducted the study are still investigating the atmospheric mechanisms behind this change, the trend seems consistent with a warming climate.

"It may mean the thermodynamically favorable conditions for these storms are migrating poleward," adds Emanuel, the Cecil and Ida Green Professor of Earth and Planetary Sciences at MIT.

The implications are serious, since the movement of peak intensity means regions further north and south of the equator, which have not previously had to face many landfalls by violent cyclones, may now have greater exposure to these extreme weather events. That, in turn, could lead to "potentially profound consequences to life and property," the paper states. "Any related changes to positions where storms make landfall will have obvious effects on coastal residents and infrastructure."

Moving with the trade winds?

The paper, "The Poleward Migration of the Location of Tropical Cyclone Maximum Intensity," was co-written by Emanuel, James P. Kossin of the University of Wisconsin, and Gabriel A. Vecchi of the National Oceanic and Atmospheric Administration (NOAA).

To conduct the study, the scientists used international data from 1982 to 2012, collected by NOAA's National Climactic Data Center. They used the location of peak intensity of cyclones as a benchmark because it is a more consistent metric than statistics such as storm duration: The duration can be harder to estimate because of difficulties in establishing precisely when a storm should first be considered a tropical cyclone.

While there are regional differences in the poleward movement of cyclones, the fact that every ocean basin other than the northern Indian Ocean has experienced this change leads the researchers to suggest, in the paper, that this "migration away from the tropics is a global phenomenon."

However, Emanuel notes, the global mechanisms underlying the trend are a matter for further research.

"We think, but have not yet been able to establish, that this is connected to independently observed poleward expansion of the Hadley circulation," Emanuel says, referring to a large-scale pattern of global winds, which in recent years has also moved further poleward. The paper notes the potential impact of vertical wind shear, which inhibits cyclone formation; data suggests a decrease in wind shear in the tropics and an increase at higher latitudes.

Emanuel notes that researchers in the field are continuing to examine the links between storm migration and global warming. Over the past three decades, the incidence of cyclones in the tropics has actually diminished — because while tropical cyclones may become more intense in a warmer climate, it is actually more difficult to generate them.

Ocean temperatures between 82 and 86 degrees Fahrenheit seem to be "ideal for the genesis of tropical cyclones," Emanuel says, "and as that belt migrates poleward, which surely it must as the whole ocean warms, the tropical cyclone genesis regions might just move with it. But we have more work to do to nail it down."

###

Written by Peter Dizikes, MIT News Office

RELATED LINKS

Kerry Emanuel
http://eapsweb.mit.edu/people/kokey

MIT Department of Earth, Atmospheric and Planetary Sciences
http://eapsweb.mit.edu

MIT announces new initiative on environment
http://newsoffice.mit.edu/2014/mit-announces-new-initiative-environment-0508

Bigger storms ahead
http://newsoffice.mit.edu/2013/bigger-storms-ahead-global-warming-0708

Kimberly Allen | Eurek Alert!
Further information:
http://newsoffice.mit.edu/2014/study-dangerous-storms-peaking-further-north-south-past-0514

Further reports about: Atmospheric Earth Hemisphere MIT Massachusetts Ocean Planetary cyclones movement storms tropical tropics winds

More articles from Studies and Analyses:

nachricht New study: How stable is the West Antarctic Ice Sheet?
09.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Online shopping might not be as green as we thought
08.02.2016 | University of Delaware

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Fish fins can sense touch

11.02.2016 | Life Sciences

New paths for generation of ultracold molecules

11.02.2016 | Physics and Astronomy

Southwest sliding into a drier climate

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>