Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cyclical climate changes in the Atlantic can affect drought in distant regions

*The researchers, including Dr. Shlomit Paz of the University of Haifa, revealed that the extended period of drought in the Sahel region of Africa over the last third of the 20th century is related to temperature changes in the North Atlantic Ocean.*

Cyclical changes in atmospheric pressure and sea surface temperature in the North Atlantic Ocean affect drought in the Sahel region on the southern Sahara rim. This has been revealed in an international study carried out by researchers from the University of Haifa, the French National Meteorological Service, Columbia University and the University of San Diego. The study was published recently in the scientific journal Atmospheric Science Letters (Royal Meteorological Society).

That climate variability in one region can have an effect on more distant areas is known in the climate research literature - the challenge being to locate these far-connections and understand their projections. The current study, co-authored by Dr. Shlomit Paz of the Department of Geography and Environmental Studies at the University of Haifa, analyzed a number of climate parameters in the North Atlantic over the 20th century, including atmospheric pressure at sea level and sea surface temperature. They revealed two "natural climate signals”: a multi-decadal signal of a period exceeding 40 years, and a quasi-decadal signal with periodicity ranging from 8 to 14 years. These two signals may cancel or enhance one another.

In order to establish these findings, the scientists compared them with climactic fluctuations as observed in coral and tree-ring studies, by which the temperature values of the past few hundred years can be reconstructed. The signals were identified in this case too.

Next the researchers identified a correlation between the cyclical waves and droughts in the Sahel region: When the Atlantic Ocean cools, there are droughts in the region, and when the Ocean temperature rises, rain returns to the Sahel region. They also found that during drought periods in the Sahel, the force of hurricanes in the Atlantic drops; and vice versa.

This is not merely a theoretical study, Dr. Paz explains. The Sahel region suffered drought over more than 20 years, from the 1970s to the mi-1990s, which caused deep environmental and social crises, such as hunger, civilian desertion, ethnic conflicts, and more. In 2007 the UN published a report stating that the situation in Darfur was intensified by the ongoing drought in the Sahel region and its surroundings.

This study contributes to information availability for climatic models, thereby improving their prediction capability. The researchers are currently investigating whether current human activity has an impact on these phenomena and are examining the effects of the signals on today's climate in Europe. They note that the thermal imbalance caused by urban development makes the research more challenging. "Today we are able to gain a better understanding of how the oceans play an important role in the earth's 'climate memory'. Once we become familiar with the natural signals, we will be able to better understand how the human factor correlates with climate," Dr. Paz states.

For more details contact Rachel Feldman • Tel: +972-4-8288722

Amir Gilat, Ph.D.
Communication and Media Relations
University of Haifa
Tel: +972-4-8240092/4

Amir Gilat | University of Haifa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>