Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting emissions pays for itself

25.08.2014

Savings from healthier air can make up for some or all of the cost of carbon-reduction policies

Lower rates of asthma and other health problems are frequently cited as benefits of policies aimed at cutting carbon emissions from sources like power plants and vehicles, because these policies also lead to reductions in other harmful types of air pollution.

But just how large are the health benefits of cleaner air in comparison to the costs of reducing carbon emissions? MIT researchers looked at three policies achieving the same reductions in the U.S., and found that the savings on health care spending and other costs related to illness can be big — in some cases, more than 10 times the cost of policy implementation.

"Carbon-reduction policies significantly improve air quality," says Noelle Selin, an assistant professor of engineering systems and atmospheric chemistry at MIT, and co-author of a study published today in Nature Climate Change. "In fact, policies aimed at cutting carbon emissions improve air quality by a similar amount as policies specifically targeting air pollution."

Selin and colleagues compared the health benefits to the economic costs of three climate policies: a clean-energy standard, a transportation policy, and a cap-and-trade program. The three were designed to resemble proposed U.S. climate policies, with the clean-energy standard requiring emissions reductions from power plants similar to those proposed in the Environmental Protection Agency's Clean Power Plan.

Health savings constant across policies

The researchers found that savings from avoided health problems could recoup 26 percent of the cost to implement a transportation policy, but up to to 10.5 times the cost of implementing a cap-and-trade program. The difference depended largely on the costs of the policies, as the savings — in the form of avoided medical care and saved sick days — remained roughly constant: Policies aimed at specific sources of air pollution, like power plants and vehicles, did not lead to substantially larger benefits than cheaper policies, like a cap-and-trade approach.

Savings from health benefits dwarf the estimated $14 billion cost of a cap-and-trade program. At the other end of the spectrum, a transportation policy with rigid fuel-economy requirements is the most expensive policy, costing more than $1 trillion in 2006 dollars, with health benefits recouping only a quarter of those costs. The price tag of a clean energy standard fell between the costs of the two other policies, with associated health benefits just edging out costs, at $247 billion versus $208 billion.

"If cost-benefit analyses of climate policies don't include the significant health benefits from healthier air, they dramatically underestimate the benefits of these policies," says lead author Tammy Thompson, now at Colorado State University, who conducted the research as a postdoc in Selin's group.

Most detailed assessment to date

The study is the most detailed assessment to date of the interwoven effects of climate policy on the economy, air pollution, and the cost of health problems related to air pollution. The MIT group paid especially close attention to how changes in emissions caused by policy translate into improvements in local and regional air quality, using comprehensive models of both the economy and the atmosphere.

In addition to carbon dioxide, burning fossil fuels releases a host of other chemicals into the atmosphere. Some of these substances interact to form ground-level ozone, as well as fine particulate matter. The researchers modeled where and when these chemical reactions occurred, and where the resulting pollutants ended up — in cities where many people would come into contact with them, or in less populated areas.

The researchers projected the health effects of ground-level ozone and fine particulate matter, two of the biggest health offenders related to fossil-fuel emissions. Both pollutants can cause asthma attacks and heart and lung disease, and can lead to premature death.

In 2011, 231 counties in the U.S. exceeded the EPA's regulatory standards for ozone, the main component of smog. Standards for fine particulate matter — airborne particles small enough to be inhaled deep into the lungs and even absorbed into the bloodstream — were exceeded in 118 counties.

While cutting carbon dioxide from current levels in the U.S. will result in savings from better air quality, pollution-related benefits decline as carbon policies become more stringent. Selin cautions that after a certain point, most of the health benefits have already been reaped, and additional emissions reductions won't translate into greater improvements.

"While air-pollution benefits can help motivate carbon policies today, these carbon policies are just the first step," Selin says. "To manage climate change, we'll have to make carbon cuts that go beyond the initial reductions that lead to the largest air-pollution benefits."

###

This research was supported by funding from the EPA's Science to Achieve Results program.

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: MIT Massachusetts atmosphere dioxide emissions improvements matter ozone pollutants savings vehicles

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>