Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curing More Cervical Cancer Cases May be in the Math

01.02.2010
Cervical cancer is highly curable when caught early. But in a third of cases, the tumor responds poorly to therapy or recurs later, when cure is much less likely.

Quicker identification of non-responding tumors may be possible using a new mathematical model developed by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The model uses information from magnetic resonance imaging (MRI) scans taken before and during therapy to monitor changes in tumor size. That information is plugged into the model to predict whether a particular case is responding well to treatment. If not, the patient can be changed to a more aggressive or experimental therapy midway through treatment, something not possible now.

The study, published in the journal Cancer Research, uses MRI scans and outcome information from 80 cervical cancer patients receiving a standard course of radiation therapy designed to cure their cancer.

“The model enables us to better interpret clinical data and predict treatment outcomes for individual patients,” says principal investigator Jian Z. Wang, assistant professor of radiation medicine and a radiation physicist at the OSUCCC-James.

“The outcome predictions presented in this paper were solely based on changes in tumor volume as derived from MRI scans, which can be easily accessed even in community hospitals,” Wang says. “The model is very robust and can provide a prediction accuracy of 90 percent for local tumor control and recurrence.”

A strength of the new model, says first author Zhibin Huang, is its use of MRI data to estimate three factors that play key roles in tumor shrinkage and that vary from patient to patient – the proportion of tumor cells that survive radiation exposure, the speed at which the body removes dead cells from the tumor, and the growth rate of surviving tumor cells.

The model is applicable to all cervical cancer patients, and the investigators are developing a model that can be applied to other cancer sites, Wang says.

Co-author Dr. Nina A. Mayr, professor of radiation medicine at Ohio State, notes that the size of cervical tumors is currently estimated by touch, or palpation, which is often imprecise. Furthermore, shrinkage of a tumor may not be apparent until months after therapy has ended.

Other clinical factors currently used to predict a tumor’s response to therapy include the tumor’s stage, whether it has invaded nearby lymph nodes and its microscopic appearance.

“Our kinetic model helps us understand the underlying biological mechanisms of the rather complicated living tissue that is a tumor,” Wang says. “It enables us to better interpret clinical data and predict treatment outcomes, which is critical for identifying the most effective therapy for personalized medicine.”

This study was supported by a grant from the National Cancer Institute.

Other Ohio State researchers involved in this study were William T.C. Yuh, Simon S. Lo, Joseph F. Montebello, John C. Grecula, Lanchun Lu, Kaile Li, Hualin Zhang and Nilendu Gupta.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James (www.jamesline.com) is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Contact:
Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>