Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CU-Boulder Research Sheds Light on Why Our Brains Get Tripped Up When We're Anxious

14.09.2010
A new University of Colorado at Boulder study sheds light on the brain mechanisms that allow us to make choices and ultimately could be helpful in improving treatments for the millions of people who suffer from the effects of anxiety disorders.

In the study, CU-Boulder psychology Professor Yuko Munakata and her research colleagues found that "neural inhibition," a process that occurs when one nerve cell suppresses activity in another, is a critical aspect in our ability to make choices.

"The breakthrough here is that this helps us clarify the question of what is happening in the brain when we make choices, like when we choose our words," Munakata said. "Understanding more about how we make choices, how the brain is doing this and what the mechanisms are, could allow scientists to develop new treatments for things such as anxiety disorders."

Researchers have long struggled to determine why people with anxiety can be paralyzed when it comes to decision-making involving many potential options. Munakata believes the reason is that people with anxiety have decreased neural inhibition in their brain, which leads to difficulty making choices.

"A lot of the pieces have been there," she said. "What's new in this work is bringing all of this together to say here's how we can fit all of these pieces of information together in a coherent framework explaining why it's especially hard for people with anxiety to make decisions and why it links to neural inhibitors."

A paper on the findings titled "Neural inhibition enables selection during language processing" appeared in the Aug. 30 Proceedings of the National Academy of Sciences. CU-Boulder professors Tim Curran, Marie Banich and Randall O'Reilly, graduate students Hannah Snyder and Erika Nyhus and undergraduate honors thesis student Natalie Hutchison co-authored the paper.

In the study, they tested the idea that neural inhibition in the brain plays a big role in decision-making by creating a computer model of the brain called a neural network simulation.

"We found that if we increased the amount of inhibition in this simulated brain then our system got much better at making hard choices," said Hannah Snyder, a psychology graduate student who worked with Munakata on the study. "If we decreased inhibition in the brain, then the simulation had much more trouble making choices."

Through their model they looked at the brain mechanisms involved when we choose words. They then tested the model's predictions on people by asking them to think of the first verb that comes to mind when they are presented with a noun.

"We know that making decisions, in this case choosing our words, taps into this left-front region of the brain, called the left ventrolateral prefrontal cortex," Munakata said. "We wanted to figure out what is happening in that part of the brain that lets us make these choices. Our idea here, which we have shown through the word-choosing model, is that there's a fight between neurons in this area of the brain that lets us choose our words."

They then tested the model's predictions that more neural inhibition in the brain makes it easier to make choices by examining the effects of increased and decreased inhibition in people's brains. They increased inhibition by using a drug called midazolam and found that people got much better at making hard choices. It didn't affect other aspects of their thinking, but rather only the area of making choices. They investigated the effects of decreased inhibition by looking at people with anxiety.

"We found that the worse their anxiety was, the worse they were at making decisions, and the activity in their left ventrolateral prefrontal cortex was less typical," Munakata said.

There are two ways in which the research could be helpful in improving treatments for anxiety, according to Snyder. While specific medications that increase neural inhibition are currently used to treat the emotional symptoms of anxiety disorders, the findings suggest that they might also be helpful in treating the difficulty those suffering from anxiety have in selecting one option when there are too many choices.

"Secondly, a more precise understanding of what aspects of cognition patients are struggling with could be extremely valuable in designing effective approaches to therapy for each patient," she said. "For example, if someone with an anxiety disorder has difficulty selecting among multiple options, he or she might benefit from learning how to structure their environment to avoid choice overload."

The work was done in CU-Boulder's Center for Determinants of Executive Function and Dysfunction, which brings together researchers from different areas of expertise on campus and beyond including experts on drug studies, neuroimaging and anxiety. The center is funded by the National Institute of Mental Health.

Contact

Yuko Munakata, 303-735-5499
Hannah Snyder, hannah.snyder@colorado.edu
Greg Swenson, CU News Services, 303-492-3113

Yuko Munakata | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>