Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT helps identify bullet trajectories

11.01.2011
Multidetector computed tomography (MDCT) provides an efficient, effective way to analyze wounds from bullets and explosive devices, according to a study published online and in the March issue of Radiology.

"The information provided by MDCT has the potential to improve patient care and aid in both military and civilian forensic investigations," said the study's lead author, Les R. Folio, D.O., M.P.H., from the Uniformed Services University in Bethesda, Md.

U.S. troops stationed in Iraq and Afghanistan face threats from increased sniper activity and the use of improvised explosive devices. Current clinical reports of wounds from bullets and bomb fragments do not include the progression of the trajectory or the direction of the wound path, despite the fact that ballistic injuries are not necessarily confined to a single anatomic structure.

While research has shown the value of CT in the analysis of ballistic wound paths, there is no widely accepted method for consistently and accurately pinpointing wound paths and determining the trajectory angles.

For the study, researchers evaluated the accuracy of MDCT-based ballistic wound path identification. They had a marksman shoot six shots from a rifle into two simulated legs made from various synthetic materials to optimally represent real tissue. The legs were tilted at six different angles based on common sniper heights and distances.

After the leg phantoms were scanned with 64-channel MDCT, several radiologists independently reviewed the CT images and recorded entrance and exit sites for the bullet trajectories. The angles measured on MDCT corresponded closely with those calculated from coordinates with actual shooting angles. Dr. Folio and his team concluded that radiologists could estimate the location of a sniper or an explosive device by extrapolating trajectories identified on MDCT when other factors, such as sniper distance and the victim's position, are known.

"Investigators want to know where the sniper was and where the bomb blast originated," Dr. Folio said. "MDCT allows us to see the path and help determine these answers."

MDCT-based calculations of wound paths and angles of trajectory have other potential benefits, according to Dr. Folio, including assistance in crime scene analysis and the triage and treatment of patients. The work can also be applied to records from the Joint Theater Trauma Registry, a U.S. Department of Defense database of penetrating injuries in fatally and catastrophically wounded soldiers.

"This technology allows us to analyze thousands of penetrating injuries, correlate them with external ballistics and use that data to help develop protective gear and prevent future injuries," Dr. Folio said.

Additional research into MDCT's potential to analyze trajectories and wound paths in other areas of the body, including the head, chest and abdomen, is ongoing. Dr. Folio is currently leading a study on automated trajectory analysis in Vietnam veterans with traumatic brain injuries.

"CT-based Ballistic Wound Path Identification and Trajectory Analysis in Anatomic Ballistic Phantoms." Collaborating with Dr. Folio was Tatjana V. Fischer, Paul J. Shogan, D.O., Michael I. Frew, M.D., Pil S. Kang, M.D., Rolf Bunger, M.D., Ph.D., and James M. Provenzale, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on CT, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>