Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystalline Compound Found in Asian Medicine, Cuisine Shown to be Cancer Chemopreventive

A collaborative team of scientists from the Uniformed Services University of the Health Sciences (USU) will have a study of the effects of curcumin in prostate cancer cells published in the September 2008 issue of Cancer Biology and Therapy.

Curcumin (diferuloylmethane), a crystalline compound, is the major active component of turmeric (Curcuma longa Linn), which has been traditionally used in medicine and cuisine in Asian countries. Curcumin has shown to be cancer chemopreventive in several different model tumor bioassay systems including colon, duodenal, stomach, prostate and breast carcinogenesis both in-vitro and in-vivo.

Dr. Radha Maheshwari, professor of Pathology, USU; Dr. Rajesh Thangapazham, graduate student of Birla Institute of Technology and Science, Pilani; Dr. Rajesh Thangapazham, at the Department of Pathology in collaboration with Drs. Shiv Srivastava, Albert Dobi and colleagues at the Center for Prostate Disease Research, Department of Surgery, USU, performed a temporal gene expression analysis of the Curcumin-Gene Expression Response using hormone-responsive and non responsive human prostate cancer cell line, LNCaP and C4-2B respectively.

Hierarchical clustering methods and functional classification showed temporal co-regulation of genes involved in specific biochemical pathways involved in the cellular stress response pathways. Androgen Receptor (AR) regulated genes which play critical roles in normal growth and differentiation of prostate gland, as well as in prostate cancer, were also a part of the observed gene expression alteration. NKX3.1, TMPRSS2 and PMEPA1 were downregulated by curcumin. Of note curcumin down-regulated androgen upregulated transcript encoded by the potentially causal TMPRSS2-ERG gene fusion, a common oncogenic alteration noted in 50-70% of prostate cancer patients. This report established novel features of curcumin in prostate cancer cells of varying tumorigenic phenotypes and provides potentially novel read-outs for assessing effectiveness of curcumin in prostate cancer and likely in other cancers. Specifically known as well as new gene-networks identified here further delineate molecular targets of curcumin in prostate cancer cells.

The current study was supported by grants from the US Military Cancer Institute, Uniformed Services University of the Health Sciences and US-INDIA Foreign Currency Fund from the US Department of State.

The Uniformed Services University is located on the grounds of Bethesda’s National Naval Medical Center and across from the National Institutes of Health. The university is the nation’s federal school of medicine and graduate school of nursing. It educates health care professionals dedicated to career service in the Department of Defense and the U.S. Public Health Service. Students are active-duty uniformed officers in the Army, Navy, Air Force and Public Health Service, who are being educated to deal with wartime casualties, national disasters, emerging infectious diseases, and other public health emergencies. Of the university’s more than 4,200 physician alumni, the vast majority serve on active duty and are supporting operations in Iraq, Afghanistan, and elsewhere, offering their leadership and expertise.

Sharon Willis | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>