Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystalline Compound Found in Asian Medicine, Cuisine Shown to be Cancer Chemopreventive

15.09.2008
A collaborative team of scientists from the Uniformed Services University of the Health Sciences (USU) will have a study of the effects of curcumin in prostate cancer cells published in the September 2008 issue of Cancer Biology and Therapy.

Curcumin (diferuloylmethane), a crystalline compound, is the major active component of turmeric (Curcuma longa Linn), which has been traditionally used in medicine and cuisine in Asian countries. Curcumin has shown to be cancer chemopreventive in several different model tumor bioassay systems including colon, duodenal, stomach, prostate and breast carcinogenesis both in-vitro and in-vivo.

Dr. Radha Maheshwari, professor of Pathology, USU; Dr. Rajesh Thangapazham, graduate student of Birla Institute of Technology and Science, Pilani; Dr. Rajesh Thangapazham, at the Department of Pathology in collaboration with Drs. Shiv Srivastava, Albert Dobi and colleagues at the Center for Prostate Disease Research, Department of Surgery, USU, performed a temporal gene expression analysis of the Curcumin-Gene Expression Response using hormone-responsive and non responsive human prostate cancer cell line, LNCaP and C4-2B respectively.

Hierarchical clustering methods and functional classification showed temporal co-regulation of genes involved in specific biochemical pathways involved in the cellular stress response pathways. Androgen Receptor (AR) regulated genes which play critical roles in normal growth and differentiation of prostate gland, as well as in prostate cancer, were also a part of the observed gene expression alteration. NKX3.1, TMPRSS2 and PMEPA1 were downregulated by curcumin. Of note curcumin down-regulated androgen upregulated transcript encoded by the potentially causal TMPRSS2-ERG gene fusion, a common oncogenic alteration noted in 50-70% of prostate cancer patients. This report established novel features of curcumin in prostate cancer cells of varying tumorigenic phenotypes and provides potentially novel read-outs for assessing effectiveness of curcumin in prostate cancer and likely in other cancers. Specifically known as well as new gene-networks identified here further delineate molecular targets of curcumin in prostate cancer cells.

The current study was supported by grants from the US Military Cancer Institute, Uniformed Services University of the Health Sciences and US-INDIA Foreign Currency Fund from the US Department of State.

The Uniformed Services University is located on the grounds of Bethesda’s National Naval Medical Center and across from the National Institutes of Health. The university is the nation’s federal school of medicine and graduate school of nursing. It educates health care professionals dedicated to career service in the Department of Defense and the U.S. Public Health Service. Students are active-duty uniformed officers in the Army, Navy, Air Force and Public Health Service, who are being educated to deal with wartime casualties, national disasters, emerging infectious diseases, and other public health emergencies. Of the university’s more than 4,200 physician alumni, the vast majority serve on active duty and are supporting operations in Iraq, Afghanistan, and elsewhere, offering their leadership and expertise.

Sharon Willis | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>