Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystalline Compound Found in Asian Medicine, Cuisine Shown to be Cancer Chemopreventive

15.09.2008
A collaborative team of scientists from the Uniformed Services University of the Health Sciences (USU) will have a study of the effects of curcumin in prostate cancer cells published in the September 2008 issue of Cancer Biology and Therapy.

Curcumin (diferuloylmethane), a crystalline compound, is the major active component of turmeric (Curcuma longa Linn), which has been traditionally used in medicine and cuisine in Asian countries. Curcumin has shown to be cancer chemopreventive in several different model tumor bioassay systems including colon, duodenal, stomach, prostate and breast carcinogenesis both in-vitro and in-vivo.

Dr. Radha Maheshwari, professor of Pathology, USU; Dr. Rajesh Thangapazham, graduate student of Birla Institute of Technology and Science, Pilani; Dr. Rajesh Thangapazham, at the Department of Pathology in collaboration with Drs. Shiv Srivastava, Albert Dobi and colleagues at the Center for Prostate Disease Research, Department of Surgery, USU, performed a temporal gene expression analysis of the Curcumin-Gene Expression Response using hormone-responsive and non responsive human prostate cancer cell line, LNCaP and C4-2B respectively.

Hierarchical clustering methods and functional classification showed temporal co-regulation of genes involved in specific biochemical pathways involved in the cellular stress response pathways. Androgen Receptor (AR) regulated genes which play critical roles in normal growth and differentiation of prostate gland, as well as in prostate cancer, were also a part of the observed gene expression alteration. NKX3.1, TMPRSS2 and PMEPA1 were downregulated by curcumin. Of note curcumin down-regulated androgen upregulated transcript encoded by the potentially causal TMPRSS2-ERG gene fusion, a common oncogenic alteration noted in 50-70% of prostate cancer patients. This report established novel features of curcumin in prostate cancer cells of varying tumorigenic phenotypes and provides potentially novel read-outs for assessing effectiveness of curcumin in prostate cancer and likely in other cancers. Specifically known as well as new gene-networks identified here further delineate molecular targets of curcumin in prostate cancer cells.

The current study was supported by grants from the US Military Cancer Institute, Uniformed Services University of the Health Sciences and US-INDIA Foreign Currency Fund from the US Department of State.

The Uniformed Services University is located on the grounds of Bethesda’s National Naval Medical Center and across from the National Institutes of Health. The university is the nation’s federal school of medicine and graduate school of nursing. It educates health care professionals dedicated to career service in the Department of Defense and the U.S. Public Health Service. Students are active-duty uniformed officers in the Army, Navy, Air Force and Public Health Service, who are being educated to deal with wartime casualties, national disasters, emerging infectious diseases, and other public health emergencies. Of the university’s more than 4,200 physician alumni, the vast majority serve on active duty and are supporting operations in Iraq, Afghanistan, and elsewhere, offering their leadership and expertise.

Sharon Willis | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>