Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal quest brings success

29.09.2008
Study obtains protein structures more efficiently using a combination of techniques

The chances of obtaining crystals of sufficient quality and quantity to allow determination of three-dimensional protein structures using synchrotron radiation are significantly increased using a mix of robots geared to different crystallization techniques.

That is the conclusion of a screening study by researchers in Japan, led by Seiki Kuramistu of RIKEN’s SPring-8 Center in Harima, recently reported in Acta Crystallographica (1).

The work was part of the whole-cell project on the bacterium Thermus thermophilus HB8 (Fig. 1), which is found naturally in hot springs at temperatures of up to 85 °C. The aim of the project is to increase understanding of cells at a molecular level by determining the structures and functions of all proteins encoded by genes. Thermus was chosen as a model organism because it has a minimal set of genes which codes for about 2,000 proteins which are highly stable for analysis and more than 70% of which have human equivalents.

The standard means of determining protein structure, x-ray crystallography, involves aligning protein molecules into a lattice of repeating series of ‘unit cells’, and then passing x-rays through the resulting crystal. The structure of the protein is ‘solved’ by analyzing the resulting diffraction pattern.

But proteins are of irregular shape and the protein lattice is held together only by relatively weak electrostatic forces. So protein crystals are generally fragile and highly sensitive to environmental conditions. These must be adjusted to optimum levels for crystallization. At best it takes several hours to grow crystals suitable for data collection, but typically it takes months. Thus, protein crystallization has proved a major bottleneck in the whole-cell project.

In an attempt to increase efficiency, the researchers used 18 sample proteins from Thermus to test the capabilities of robots which use different techniques to crystallize proteins—sitting-drop vapor diffusion, hanging-drop vapor diffusion and a modified microbatch technique. They also trialed a microfluidic device designed to rapidly determine the best initial conditions, but which could not produce crystals in large enough quantities for diffraction.

The research team found that both vapor diffusion robots produced diffraction-quality crystals quicker than the microbatch robot—the sitting-drop being the faster. The microbatch robot, however, was most likely to be successful. The microfluidic device outperformed the other three on both counts. On the basis of these results the researchers used a combination of a sitting-drop and a microbatch robot to successfully determine structures for 360 of 944 purified proteins for the whole-cell project.

1. Iino, H., Naitow, H., Nakamura, Y., Nakagawa, N., Agari, Y., Kanagawa, M., Ebihara, A., Shinkai, A., Sugahara, M., Miyano, M., et al. Crystallization screening test for the whole-cell project on Thermus thermophilus HB8. Acta Crystallographica F64, 487–491 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/538/
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>