Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal quest brings success

29.09.2008
Study obtains protein structures more efficiently using a combination of techniques

The chances of obtaining crystals of sufficient quality and quantity to allow determination of three-dimensional protein structures using synchrotron radiation are significantly increased using a mix of robots geared to different crystallization techniques.

That is the conclusion of a screening study by researchers in Japan, led by Seiki Kuramistu of RIKEN’s SPring-8 Center in Harima, recently reported in Acta Crystallographica (1).

The work was part of the whole-cell project on the bacterium Thermus thermophilus HB8 (Fig. 1), which is found naturally in hot springs at temperatures of up to 85 °C. The aim of the project is to increase understanding of cells at a molecular level by determining the structures and functions of all proteins encoded by genes. Thermus was chosen as a model organism because it has a minimal set of genes which codes for about 2,000 proteins which are highly stable for analysis and more than 70% of which have human equivalents.

The standard means of determining protein structure, x-ray crystallography, involves aligning protein molecules into a lattice of repeating series of ‘unit cells’, and then passing x-rays through the resulting crystal. The structure of the protein is ‘solved’ by analyzing the resulting diffraction pattern.

But proteins are of irregular shape and the protein lattice is held together only by relatively weak electrostatic forces. So protein crystals are generally fragile and highly sensitive to environmental conditions. These must be adjusted to optimum levels for crystallization. At best it takes several hours to grow crystals suitable for data collection, but typically it takes months. Thus, protein crystallization has proved a major bottleneck in the whole-cell project.

In an attempt to increase efficiency, the researchers used 18 sample proteins from Thermus to test the capabilities of robots which use different techniques to crystallize proteins—sitting-drop vapor diffusion, hanging-drop vapor diffusion and a modified microbatch technique. They also trialed a microfluidic device designed to rapidly determine the best initial conditions, but which could not produce crystals in large enough quantities for diffraction.

The research team found that both vapor diffusion robots produced diffraction-quality crystals quicker than the microbatch robot—the sitting-drop being the faster. The microbatch robot, however, was most likely to be successful. The microfluidic device outperformed the other three on both counts. On the basis of these results the researchers used a combination of a sitting-drop and a microbatch robot to successfully determine structures for 360 of 944 purified proteins for the whole-cell project.

1. Iino, H., Naitow, H., Nakamura, Y., Nakagawa, N., Agari, Y., Kanagawa, M., Ebihara, A., Shinkai, A., Sugahara, M., Miyano, M., et al. Crystallization screening test for the whole-cell project on Thermus thermophilus HB8. Acta Crystallographica F64, 487–491 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/538/
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>