Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crying baby draws blunted response in depressed mom's brain

23.02.2011
FMRI at the University of Oregon provides a window to see differences in brain responses

Mothers who are depressed respond differently to their crying babies than do non-depressed moms. In fact, their reaction, according to brain scans at the University of Oregon, is much more muted than the robust brain activity in non-depressed moms.

An infant crying is normal, but how mothers respond can affect a child's development, says Jennifer C. Ablow, professor of psychology. For years, Ablow has studied the relationship of behavior and physiological responses such as heart rate and respiration of mothers, both depressed and not, when they respond to their infants' crying.

A new study -- online in advance of publication in the journal Social Cognitive and Affective Neuroscience -- provides the first look at brain activity of depressed women responding to recordings of crying infants, either their own or someone else's. The brains of 22 women were scrutinized using functional magnetic resonance imaging (fMRI).

Non-invasive fMRI, when focused on the brain, measures blood flow changes using a magnetic field and radio frequency pulses, producing detailed images that provide scientists with information about brain activity or help medical staff diagnose disease.

Researchers considered both group differences between women with chronic histories of depression and those with no clinical diagnoses, and more subtle variations in the women's brain activity related to current levels of depressive symptoms. All were first time mothers whose babies were 18 months old.

"It looks as though depressed mothers are not responding in a more negative way than non-depressed mothers, which has been one hypothesis," said Heidemarie K. Laurent, assistant professor at the University of Wyoming, who led the study as a postdoctoral researcher in Ablow's lab. "What we saw was really more of a lack of responding in a positive way."

As a group, brain responses in non-depressed mothers responding to the sound of their own babies' cries were seen on both sides of the brain's lateral paralimbic areas and core limbic sub-cortical regions including the striatum, thalamus and midbrain; depressed mothers showed no unique response to their babies. Non-depressed mothers activated much more strongly than depressed mothers in a subcortical cluster involving the striatum -- specifically the caudate and nucleus accumbens -- and the medial thalamus. These areas are closely associated with the processing of rewards and motivation.

"In this context it was interesting to see that the non-depressed mothers were able to respond to this cry sound as a positive cue," Laurent said. "Their response was consistent with wanting to approach their infants. Depressed mothers were really lacking in that response. "

In a separate comparison, mothers who self-reported that they were more depressed at the time of their fMRI sessions displayed diminished prefrontal brain activity, particularly in the anterior cingulate cortex, when hearing their own baby's cries. This brain region, Laurent said, is associated with the abilities to evaluate information and to plan and regulate a response to emotional cues.

The important message of the study, Ablow and Laurent said, is that depression can exert long-lasting effects on mother-infant relationships by blunting the mother's response to her infant's emotional cues.

"A mother who is able to process and act upon relevant information will have more sensitive interactions with her infant, which, in turn, will allow the infant to develop its own regulation capacities," Ablow said. "Some mothers are unable to respond optimally to their infant's emotional cues. A mother's emotional response requires a coordination of multiple cortical and sub-cortical systems of the brain. How that plays out has not been well known."

The findings may suggest new implications for treating depression symptoms in mothers, Laurent said. "Some of these prefrontal problems may be changed more easily by addressing current symptoms, but there may be deeper, longer-lasting deficits at the motivational levels of the brain that will take more time to overcome," she said.

We regard the findings as a "jumping-off point" to better understand the neurobiology of the mothering brain, said Ablow, co-director of the UO's Developmental Sociobiology Lab. "In our next study, we plan to follow women from the prenatal period through their first-year of motherhood to get a fuller picture of how these brain responses shape mother-infant relationships during a critical period of their babies' development."

The National Science Foundation, through a grant to Ablow, and a National Institute of Mental Health postdoctoral fellowship to Laurent, funded the research. The project also received a pilot grant from the UO Brain Biology Machine Initiative through the Lewis Center for Neuroimaging.

About the University of Oregon

The University of Oregon is among 108 institutions chosen from 4,633 U.S. universities as providing "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources: Jennifer C. Ablow, associate professor of psychology, jcablow@uoregon.edu (Ablow currently is on sabbatical in France and accessible by email); Heidemarie K. Laurent, assistant professor of psychology, University of Wyoming, 307-766-3442, hlaurent@uwyo.edu.

Links:
Ablow faculty page: http://psychweb.uoregon.edu/people/ablow-jennifer
Developmental Sociobiology Lab: http://pages.uoregon.edu/dslab/DSL_Home.html
Laurent faculty page: http://www.uwyo.edu/PSYCHOLOGY/faculty/Laurent,%20H.%20.html

Lewis Center for Neuroimaging: http://lcni.uoregon.edu/

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>