Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

You can count on this: Math ability is inborn

09.08.2011
We accept that some people are born with a talent for music or art or athletics. But what about mathematics? Do some of us just arrive in the world with better math skills than others?

It seems we do, at least according to the results of a study by a team of Johns Hopkins University psychologists. Led by Melissa Libertus, a post-doctoral fellow in the Department of Psychological and Brain Sciences at the Krieger School of Arts and Sciences, the study -- published online in a recent issue of Developmental Science -- indicates that math ability in preschool children is strongly linked to their inborn and primitive "number sense," called an "Approximate Number System" or ANS.

Research reveals that "number sense" is basic to all animals, not just human beings. For instance, creatures that hunt or gather food use it to ascertain where they can find and procure the most nuts, plants or game and to keep track of the food they hunt or gather. We humans use it daily to allow us, at a glance, to estimate the number of open seats in a movie theater or the number of people in a crowded meeting. And it is measurable, even in newborn infants.

Though the link between ANS and formal mathematics ability already has been established in adolescents, Libertus says her team's is the first study to examine the role of "number sense" in children too young to already have had substantial formal mathematics instruction.

"The relationship between 'number sense' and math ability is important and intriguing because we believe that 'number sense' is universal, whereas math ability has been thought to be highly dependent on culture and language and takes many years to learn," she explained. "Thus, a link between the two is surprising and raises many important questions and issues, including one of the most important ones, which is whether we can train a child's number sense with an eye to improving his future math ability."

The team tested 200 4-year-old (on average) children on several tasks measuring number sense, mathematical ability and verbal ability. The children were rewarded for their participation with small trinkets, such as stickers and pencils.

During the number sense task, researchers asked the children to view flashing groups of blue and yellow dots on a computer screen and to estimate which color group of dots was more numerous. Counting wasn't an option, both because the dots were flashed so quickly and because most of the children were not yet skilled counters. The preschoolers would then verbally tell the tester whether the yellow or blue dots were more numerous, and the tester would press the appropriate button. Some comparisons were easy (like comparing five yellow versus 10 blue dots). Others were much harder (like comparing five yellow versus six blue dots). Children were informed of right or wrong answers via a high- or low-pitched beep. (You can take a test similar to the one administered to the children online here: http://www.panamath.org/testyourself.php )

The children also were given a standardized test of early mathematics ability that measures numbering skills (verbally counting items on a page), number-comparison (determining which of two spoken number words is greater or lesser), numeral literacy (reading Arabic numbers), mastery of number facts (such as addition or multiplication), calculation skills (solving written addition and subtraction problems) and number concepts (such as answering how many sets of 10 are in 100.) This standardized test is often given to children between the ages of 3 and 8 years.

Lastly, the parents and guardians of the children were given an assessment that asked them to indicate each word on a list that their children had been heard to say. According to Libertus, this verbal test was administered because language and math abilities are to some extent linked through general intelligence, and the researchers wanted to make sure that the differences in math ability that they found were not just due to some children performing better on all kinds of tasks, or to some children feeling more comfortable being tested than others.

Libertus and her colleagues Lisa Feigenson and Justin Halberda, faculty members in the Department of Psychological and Brain Sciences, found that the precision of children's estimations correlated with their math skill. That is, the children who could make the finest-grained estimations in the dot comparison task (for example, judging that eight yellow dots were more than seven blue dots) also knew the most about Arabic numerals and arithmetic.

According to the researchers, this means that inborn numerical estimation abilities are linked to achievement (or lack thereof) in school mathematics.

"Previous studies testing older children left open the possibility that differences in instructional experience is what caused the difference in their number sense; in other words, that some children tested in middle or high school looked like they had better number sense simply because they had had better math instruction," Libertus said. "Unlike those studies, this one shows that the link between 'number sense' and math ability is already present before the beginning of formal math instruction."

Still in question, of course, is the root cause of the link between number sense and math ability. Do children born with better number sense have an easier time learning to count and to understand the symbolic nature of numbers? Or it is just that children born with less accurate number sense may end up avoiding math-related activities before they develop competency?

"Of course, many questions remain and there is much we still have to learn about this," Libertus said. "But what we have done raises many important avenues for future research and applications in education. One of the most basic is whether we can train children's Approximate Number System and thereby improve their math ability, and whether we can develop school math curricula that make use of children's ANS abilities and thus, help them grasp more advanced math concepts earlier."

This study was funded by the National Institute of Child Health and Human Development.

To read the article online, go here: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-7687.2011.01080.x/abstract

For more information about the Laboratory for Child Development at the Krieger School of Arts and Sciences: http://www.psy.jhu.edu/~labforchilddevelopment/

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

Further reports about: Arabic Arts and Sciences Brain Brain Sciences Libertus Science TV

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>