Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Couch Potatoes May Be Genetically Predisposed to Being Lazy, MU Study Finds

Genetics could be a reason some people are motivated to exercise more than others

Studies show 97 percent of American adults get less than 30 minutes of exercise a day, which is the minimum recommended amount based on federal guidelines.

New research from the University of Missouri suggests certain genetic traits may predispose people to being more or less motivated to exercise and remain active. Frank Booth, a professor in the MU College of Veterinary Medicine, along with his post-doctoral fellow Michael Roberts, were able to selectively breed rats that exhibited traits of either extreme activity or extreme laziness. They say these rats indicate that genetics could play a role in exercise motivation, even in humans.

“We have shown that it is possible to be genetically predisposed to being lazy,” Booth said. “This could be an important step in identifying additional causes for obesity in humans, especially considering dramatic increases in childhood obesity in the United States. It would be very useful to know if a person is genetically predisposed to having a lack of motivation to exercise, because that could potentially make them more likely to grow obese.”

In their study published in the American Journal of Physiology: Regulatory, Integrative and Comparative Physiology on April 3, 2013, Roberts and Booth put rats in cages with running wheels and measured how much each rat willingly ran on their wheels during a six-day period. They then bred the top 26 runners with each other and bred the 26 rats that ran the least with each other. They repeated this process through 10 generations and found that the line of running rats chose to run 10 times more than the line of “lazy” rats.

Once the researchers created their “super runner” and “couch potato” rats, they studied the levels of mitochondria in muscle cells, compared body composition and conducted thorough genetic evaluations through RNA deep sequencing of each rat.

“While we found minor differences in the body composition and levels of mitochondria in muscle cells of the rats, the most important thing we identified were the genetic differences between the two lines of rats,” Roberts said. “Out of more than 17,000 different genes in one part of the brain, we identified 36 genes that may play a role in predisposition to physical activity motivation.”

Now that the researchers have identified these specific genes, they plan on continuing their research to explore the effects each gene has on motivation to exercise.

Frank Booth also is a professor in the Department of Physiology in the MU School of Medicine as well as a research investigator in the Dalton Cardiovascular Research Center at MU. This research also featured Kevin Wells, an assistant professor of genetics in the College of Agriculture, Food and Natural Resources Division of Animal Sciences.

As a result of years of excellence in providing systematic, periodic examinations of scholarly research and provoking discussion leading to new research activity, Frank Booth will be awarded the American Physiological Society (APS) 2013 Annual Reviews Award for Scientific Reviewing. The award recognizes an APS member who has written scientific reviews that have helped provide an enhanced understanding of the area of physiology reviewed.

Nathan Hurst | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>