Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic rays do not explain global warming

17.12.2008
A new study supports earlier findings by stating that changes in cosmic rays most likely do not contribute to climate change.

It is sometimes claimed that changes in radiation from space, so-called galactic cosmic rays, can be one of the causes of global warming. A new study, investigating the effect of cosmic rays on clouds, concludes that the likelihood of this is very small.

The study "Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data" was recently published in the journal Atmospheric Chemistry and Physics. A group of researchers from the University of Oslo, Norwegian Institute for Air Research (NILU), CICERO Center for Climate and Environmental Research, and the University of Iceland, are behind the study.

Unlikely that cosmic rays affect warming
There are scientific uncertanties about cosmic rays and cloud formation. Some researchers have claimed that a reduction of cosmic rays during the last decades has contributed to the global temperature rise. The hypothesis is that fewer cosmic rays causes fewer cloud droplets and reduced droplet size, and that this again causes global warming, since reduced cloud droplets would reflect less energy from the sun back to space. However, the researchers who stick to this hypothesis find little support amongst colleagues.

“According to our research, it does not look like reduced cosmic rays leads to reduced cloud formation”, says Jon Egill Kristjansson, a professor at the University of Oslo.

This result is in line with most other research in the field. As far as Kristjansson knows, no studies have proved a correlation between reduced cosmic rays and reduced cloud formation.

Kristjansson also points out that most research shows no reduction in cosmic rays during the last decades, and that an astronomic explanation of today’s global warming therefore seems very unlikely.

Studied solar outbreaks
Kristjansson and his collegaues have used observations from so-called Forbush decrease events: Sudden outbreaks of intense solar activity that lead to a strong reduction of cosmic rays, lasting for a couple of days. The researchers have identified 22 such events between 2000 and 2005.

Based on data from the space-borne MODIS instrument, the researchers have investigated whether these events have affected cloud formation. While previous studies have mainly considered cloud cover, the high spatial and spectral resolution of the MODIS data also allows for a more thorough study of microphysical parameters such as cloud droplet size, cloud water content and cloud optical depth.

No statistically significant correlations were found between any of the four cloud parameters and galactic cosmic rays.

“Reduced cosmic rays did not lead to reduced cloud formation, either during the outbreaks or during the days that followed. Indeed, following some of the events we could see a reduction, but following others there was an increase in cloud formation. We did not find any patterns in the way the clouds changed”, Kristjansson explains.

By focusing on pristine Southern Hemisphere ocean regions, the researchers examined areas where a cosmic ray signal should be easier to detect than elsewhere.

Supports other recent work
Joanna Haigh from Imperial College London has also studied possible links between solar variability and modern-day climate change.

“This is a careful piece of work by Jon Egill Kristjansson that appears to find no evidence for the reputed link between cosmic rays and clouds," she commented to BBC.

“It's supporting other recent work that also found no relationship," Haigh added.

Petter Haugneland | alfa
Further information:
http://www.cicero.uio.no
http://www.atmos-chem-phys.net/8/7373/2008/acp-8-7373-2008.html

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>