Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic dance helps galaxies lose weight

03.08.2009
A study published this week in the journal Nature offers an explanation for the origin of dwarf spheroidal galaxies. The research may settle an outstanding puzzle in understanding galaxy formation.

Dwarf spheroidal galaxies are small and very faint, containing few stars relative to their total mass. They appear to be made mostly of dark matter - a mysterious substance detectable only by its gravitational influence, which outweighs normal matter by a factor of five to one in the universe as a whole.

Astronomers have found it difficult to explain the origin of dwarf spheroidal galaxies. Previous theories require that dwarf spheroidals orbit near large galaxies like the Milky Way, but this does not explain how dwarfs that have been observed in the outskirts of the "Local Group" of galaxies could have formed.

"These systems are 'elves' of the early universe, and understanding how they formed is a principal goal of modern cosmology," said lead author Elena D'Onghia of the Harvard-Smithsonian Center for Astrophysics (CfA).

D'Onghia and her colleagues used computer simulations to examine two scenarios for the formation of dwarf spheroidals: 1) an encounter between two dwarf galaxies far from giants like the Milky Way, with the dwarf spheroidal later accreted into the Milky Way, and 2) an encounter between a dwarf galaxy and the forming Milky Way in the early universe.

The team found that the galactic encounters excite a gravitational process which they term "resonant stripping," leading to the removal of stars from the smaller dwarf over the course of the interaction and transforming it into a dwarf spheroidal.

"Like in a cosmic dance, the encounter triggers a gravitational resonance that strips stars and gas from the dwarf galaxy, producing long visible tails and bridges of stars," explained D'Onghia.

"This mechanism explains the most important characteristic of dwarf spheroidals, which is that they are dark-matter dominated," added co-author Gurtina Besla.

The long streams of stars pulled off by gravitational interactions should be detectable. For example, the recently discovered bridge of stars between Leo IV and Leo V, two nearby dwarf spheroidal galaxies, may have resulted from resonant stripping.

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>