Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Correlation between summer Arctic sea ice cover and winter weather in Central Europe

01.02.2012
Even if the current weather situation may seem to speak against it, the probability of cold winters with much snow in Central Europe rises when the Arctic is covered by less sea ice in summer.
Scientists of the Research Unit Potsdam of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have decrypted a mechanism in which a shrinking summertime sea ice cover changes the air pressure zones in the Arctic atmosphere and impacts our European winter weather. These results of a global climate analysis were recently published in a study in the scientific journal Tellus A.

If there is a particularly large-scale melt of Arctic sea ice in summer, as observed in recent years, two important effects are intensified. Firstly, the retreat of the light ice surface reveals the darker ocean, causing it to warm up more in summer from the solar radiation (ice-albedo feedback mechanism). Secondly, the diminished ice cover can no longer prevent the heat stored in the ocean being released into the atmosphere (lid effect). As a result of the decreased sea ice cover the air is warmed more greatly than it used to be particularly in autumn and winter because during this period the ocean is warmer than the atmosphere. "These higher temperatures can be proven by current measurements from the Arctic regions", reports Ralf Jaiser, lead author of the publication from the Research Unit Potsdam of the Alfred Wegener Institute.

The warming of the air near to the ground leads to rising movements and the atmosphere becomes less stable. “We have analysed the complex non-linear processes behind this destabilisation and have shown how these altered conditions in the Arctic influence the typical circulation and air pressure patterns", explains Jaiser. One of these patterns is the air pressure difference between the Arctic and mid-latitudes: the so-called Arctic oscillation with the Azores highs and Iceland lows known from the weather reports. If this difference is high, a strong westerly wind will result which in winter carries warm and humid Atlantic air masses right down to Europe. If the wind does not come, cold Arctic air can penetrate down through to Europe, as was the case in the last two winters. Model calculations show that the air pressure difference with decreased sea ice cover in the Arctic summer is weakened in the following winter, enabling Arctic cold to push down to mid-latitudes.

Despite the low sea ice cover in summer 2011, a cold winter with much snow has so far not occurred here in Germany. Jaiser explains this as follows: "Many other factors naturally play a role in the complex climate system of our Earth which overlap in part. Our results explain the mechanisms of how regional changes in the Arctic sea ice cover have a global impact and their effects over a period from late summer to winter. Other mechanisms are linked, for example, with the snow cover in Siberia or tropical influences. The interactions between these influential factors will be the subject matter of future research work and therefore represent a factor of uncertainty in forecasts.”

It is the aim of the Potsdam researchers to find and analyse further mechanisms and to correctly show the Earth’s climate system with the help of these mechanisms in models. “Our work contributes to reducing the existing uncertainties of the global climate model and developing more credible regional climate scenarios – an important foundation to enable people to adjust to the altered conditions”, explains Prof. Dr. Klaus Dethloff, Head of the Atmospheric Circulation Section at the Research Unit Potsdam of the Alfred Wegener Institute.

Title of the original publication: R. Jaiser, K. Dethloff, D. Handorf, A. Rinke, J. Cohen, Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation, Tellus A 2012, 64, 11595, doi:10.3402/tellusa.v64i0.11595 (http://www.tellus.net/index.php/tellusa/article/view/11595)

Notes for Editors: Printable images are available at http://www.awi.de/en/news/press_releases/. Your contact partners in the Research Unit Potsdam of the Alfred Wegener Institute are Ralf Jaiser (Tel.: +49 (0)331/288-2167; email: Ralf.Jaiser@awi.de) and Prof. Dr. Klaus Dethloff (Tel.: +49 (0)331/288-2104; email: Klaus.Dethloff@awi.de). Your contact partner in the press office is Dr. Folke Mehrtens (Tel.: +49 (0)471/4831-2007; email: Folke.Mehrtens@awi.de). Please send us a copy on publication.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>