Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward controlling fungus that caused Irish potato famine

20.01.2011
Scientists are reporting a key advance toward development of a way to combat the terrible plant diseases that caused the Irish potato famine and still inflict billions of dollars of damage to crops each year around the world. Their study appears in ACS' bi-weekly journal Organic Letters.

Teck-Peng Loh and colleagues point out that the Phytophthora fungi cause extensive damage to food crops such as potatoes and soybeans as well as to ornamental plants like azaleas and rhododendrons. One species of the fungus caused the Irish potato famine in the mid 1840s.

That disaster resulted in nearly one million deaths from starvation and forced millions more people to flee Ireland for the United States and other countries. Still difficult to control despite the use of modern pesticides, the fungus continues to cause $6 billion in damage to global potato crops annually.

Scientists, however, have isolated a key hormone, alpha-1, that allows Phytophthora to reproduce. The hormone exists in several different forms, and a synthetic version of the most biologically active form could provide the basis for developing a way to control the fungus and reduce its threat, the scientists suggest.

They describe an advance toward this goal, the synthesis of a particularly active form of the mating hormone called (3R,7R,11R,15R)-hormone alpha-1. The scientists also showed that they could make relatively large quantities of the hormone. The advance could open the door to an effective method to fight this ancient scourge, they suggest.

The authors acknowledged funding from the Nanyang Technological University, Ministry of Education and Biomedical Research Council (A*STAR grant M47110006).

ARTICLE FOR IMMEDIATE RELEASE
"Total Synthesis of Phytophthora Mating Hormone alpha-1"
DOWNLOAD FULL TEXT ARTICLE
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ol102177j
CONTACT:
Teck-Peng Loh, Ph.D.
Division of Chemistry and Biological Chemistry
School of Physical and Mathematical Sciences
Nanyang Technological University
Singapore 637371
Phone: (+65) 6513-8475
Fax: (+65) 6791 1961
Email: teckpeng@ntu.edu.sg

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>