Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contraband could hide in plain sight

21.04.2010
As airport security employees scan luggage for a large variety of banned items, they may miss a deadly box cutter if they find a water bottle first.

According to new research at Duke University, identifying an easy-to-spot prohibited item such as a water bottle may hinder the discovery of other, harder-to-spot items in the same scan.

Missing items in a complex visual search is not a new idea: in the medical field, it has been known since the 1960s that radiologists tend to miss a second abnormality on an X-ray if they've found one already. The concept -- dubbed "satisfaction of search" -- is that radiologists would find the first target, think they were finished, and move on to the next patient's X-ray.

Does the principle apply to non-medical areas? That's what Stephen Mitroff, an assistant professor of psychology & neuroscience at Duke, and his colleagues set out to examine shortly after 2006, when the U.S. Transportation Security Administration banned liquids and gels from all flights, drastically changing airport luggage screens.

"The liquids rule has introduced a whole lot of easy-to-spot targets," Mitroff said.

In the new study, published online in the Journal of Experimental Psychology: Applied, Mitroff and his group asked college students to identify specific targets on a computer display – in this case, two perpendicular lines that form the letter "T" amid distracters, such as Ls and non-Ts. In some cases, Ts were easy to spot, and in other cases more difficult because they blended in with the background.

In an initial set of experiments, Mitroff and his colleagues altered the frequency of easy- and hard-to-spot targets. When the two kinds of targets appeared with equal frequency, subjects apparently had no trouble finding the hard-to-spot target in the presence of an easy one. But when the easy-to-spot item was two or three times more common, the subjects tended to overlook the hard-to-spot targets.

When Mitroff's group doubled the time allowed for each search, they saw that the students used barely a second of extra time but were significantly more accurate.

"It didn't seem to do with time itself, but it seems to be the time pressure," Mitroff said. "When you have the impending time pressure of going quickly, you are more likely to miss a second target."

Intriguingly, the data do not suggest subjects miss the second targets because they are too quick to end their search, an idea that would have bolstered the original satisfaction-of-search principle. "There seems to be some other mechanism, but it's not exactly clear what it is," Mitroff said.

One possible explanation is an idea called "attentional set," which suggests that finding one kind of target will make you more likely to find that same type of target rather than a new, different one. In radiology, it is like finding a fracture, which makes you more likely to find a second fracture rather than some other anomaly.

In an additional set of experiments, the researchers added time and accuracy pressure to the test by introducing small baggage icons that appeared along the top of the screen, mimicking a new bag on the security conveyer belt. One bag disappeared when subjects finished searching each display. They earned points for each display and the more quickly and accurately the subjects could identify the targets, the higher the points they received.

For one group of subjects, researchers set the speed of bags based on the each person's performance in a previous practice session. That group wasn't any worse at finding the second target than the first. In contrast, subjects following a brisk rate set by the researchers were worse at finding the second target.

"The results fit with what we think would happen if you remove the searcher from seeing the line," Mitroff said. In a remote search, the screeners will not know whether there is one person or 500 people waiting. "It's not in use, but these data suggest that it might be something worth trying."

Mitroff's group next has plans to replace T-targets with multiple targets of different types, such as tools and bottles.

Citation: Generalized "satisfaction of search": Adverse influences on dual-target search accuracy. Fleck, Mathias S.; Samei, Ehsan; Mitroff, Stephen R. Journal of Experimental Psychology: Applied. Vol 16(1), Mar 2010, 60-71. doi: 10.1037/a0018629

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>