Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Contraband could hide in plain sight

As airport security employees scan luggage for a large variety of banned items, they may miss a deadly box cutter if they find a water bottle first.

According to new research at Duke University, identifying an easy-to-spot prohibited item such as a water bottle may hinder the discovery of other, harder-to-spot items in the same scan.

Missing items in a complex visual search is not a new idea: in the medical field, it has been known since the 1960s that radiologists tend to miss a second abnormality on an X-ray if they've found one already. The concept -- dubbed "satisfaction of search" -- is that radiologists would find the first target, think they were finished, and move on to the next patient's X-ray.

Does the principle apply to non-medical areas? That's what Stephen Mitroff, an assistant professor of psychology & neuroscience at Duke, and his colleagues set out to examine shortly after 2006, when the U.S. Transportation Security Administration banned liquids and gels from all flights, drastically changing airport luggage screens.

"The liquids rule has introduced a whole lot of easy-to-spot targets," Mitroff said.

In the new study, published online in the Journal of Experimental Psychology: Applied, Mitroff and his group asked college students to identify specific targets on a computer display – in this case, two perpendicular lines that form the letter "T" amid distracters, such as Ls and non-Ts. In some cases, Ts were easy to spot, and in other cases more difficult because they blended in with the background.

In an initial set of experiments, Mitroff and his colleagues altered the frequency of easy- and hard-to-spot targets. When the two kinds of targets appeared with equal frequency, subjects apparently had no trouble finding the hard-to-spot target in the presence of an easy one. But when the easy-to-spot item was two or three times more common, the subjects tended to overlook the hard-to-spot targets.

When Mitroff's group doubled the time allowed for each search, they saw that the students used barely a second of extra time but were significantly more accurate.

"It didn't seem to do with time itself, but it seems to be the time pressure," Mitroff said. "When you have the impending time pressure of going quickly, you are more likely to miss a second target."

Intriguingly, the data do not suggest subjects miss the second targets because they are too quick to end their search, an idea that would have bolstered the original satisfaction-of-search principle. "There seems to be some other mechanism, but it's not exactly clear what it is," Mitroff said.

One possible explanation is an idea called "attentional set," which suggests that finding one kind of target will make you more likely to find that same type of target rather than a new, different one. In radiology, it is like finding a fracture, which makes you more likely to find a second fracture rather than some other anomaly.

In an additional set of experiments, the researchers added time and accuracy pressure to the test by introducing small baggage icons that appeared along the top of the screen, mimicking a new bag on the security conveyer belt. One bag disappeared when subjects finished searching each display. They earned points for each display and the more quickly and accurately the subjects could identify the targets, the higher the points they received.

For one group of subjects, researchers set the speed of bags based on the each person's performance in a previous practice session. That group wasn't any worse at finding the second target than the first. In contrast, subjects following a brisk rate set by the researchers were worse at finding the second target.

"The results fit with what we think would happen if you remove the searcher from seeing the line," Mitroff said. In a remote search, the screeners will not know whether there is one person or 500 people waiting. "It's not in use, but these data suggest that it might be something worth trying."

Mitroff's group next has plans to replace T-targets with multiple targets of different types, such as tools and bottles.

Citation: Generalized "satisfaction of search": Adverse influences on dual-target search accuracy. Fleck, Mathias S.; Samei, Ehsan; Mitroff, Stephen R. Journal of Experimental Psychology: Applied. Vol 16(1), Mar 2010, 60-71. doi: 10.1037/a0018629

Karl Leif Bates | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>