Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conserving soil and water in dryland wheat region

25.11.2014

In the world’s driest rainfed wheat region, Washington State University researchers have identified summer fallow management practices that can make all the difference for farmers, water and soil conservation, and air quality.

Wheat growers in the Horse Heaven Hills of south-central Washington farm with an average of 6-8 inches of rain a year. Wind erosion has caused blowing dust that exceeded federal air quality standards 20 times in the past 10 years.


Harvesting hard red winter wheat at the western trial site in 2008 yielded 16 bushels per acre.

“Some of these events caused complete brown outs, zero visibility, closed freeways,” said WSU research agronomist Bill Schillinger.

Science to anchor farmer incentives

He and WSU agricultural economist Doug Young compared three fallow management systems in the western part of the Horse Heaven Hills with six inches of annual rainfall and the same practices in the eastern part with eight inches of rain.

The study was published in the Soil Science Society of America journal in September: Schillinger, W. F. and D. L. Young. (2014). Best Management Practices for Summer Fallow in the World’s Driest Rainfed Wheat Region. Soil Science Society of America Journal. 78:1707-1715 doi: 10.2136/sssaj2014.04.0168.

The five-year study provides the U.S. Department of Agriculture’s Natural Resources Conservation Service with science-based information needed to develop incentives for wheat farmers to change from traditional-tillage fallow practices to undercutter-tillage or no-till fallow systems.

Timing to trap moisture

Farmers in the Horse Heaven Hills practice a winter wheat-summer fallow rotation where only one crop is grown every other year on a given piece of land.

Average yields can be as low as 18 bushels per acre – compared to upwards of 120 bushels per acre in the higher rainfall area of the Palouse in eastern Washington. Though the margins are tight, with careful management wheat farming in the Horse Heaven Hills can be profitable.

To get the highest yield, farmers need to plant winter wheat in late August or early September after a year of fallow. The fallow period allows enough moisture from winter and spring rains to accumulate in the soil for seeds to get established.

“In east-central Washington, if you can’t plant in late summer into deep seed-zone moisture in fallow, then you have to wait for fall rains in mid-October or later,” Schillinger said.

The longer it takes to get winter wheat seedlings established, the lower the potential for good yields.

To help ensure precious soil moisture remains in the seeding zone, farmers till the soil in the spring. Tillage breaks up the capillary action of the soil; this helps slow soil moisture evaporation in the seed zone during the hot, dry summer months.

But too much tillage can cause soil loss through wind erosion that feeds hazardous dust storms.

Undercutting in the east

Compared to traditional tillage, Schillinger and Young found that undercutter tillage was the best option for fallow in the slightly moister eastern region of the Horse Heaven Hills, where late-August planting is possible and spring tillage helps retain summer soil moisture.

With wide, narrow-pitched, V-shaped blades, the undercutter slices beneath the soil surface to interrupt capillary action in the seed zone without causing much disturbance of the soil surface.

Schillinger said scientists and farmers have conclusively shown that spring tillage with the undercutter effectively retains seed-zone moisture. It also retains significantly greater surface residue and surface soil clods – which are less likely to be disturbed by wind and become airborne – compared to traditional tillage implements such as a tandem disk or field cultivator.

No till in the west

In the western region of the Horse Heaven Hills, the best option for controlling wind erosion was to practice no-till fallow; that is, to avoid tillage altogether. Most of the time, rainfall in this area simply isn’t sufficient to establish an early stand of winter wheat with any fallow management system.

“There’s no reason to till the soil when you already know in the spring that it will be too dry to plant wheat in late August,” Schillinger said.

Economist Young found that, despite the modest grain yield potential, wheat farming in this environment can be profitable – with enough acreage and judicious use of inputs to manage costs. In fact, late-planted winter wheat on no-till fallow was just as profitable as traditional-tillage and undercutter-tillage fallow treatments at the western site.

Contact:

Bill Schillinger, WSU Department of Crop and Soil Sciences, 509-235-1933, william.schillinger@wsu.edu

Bill Schillinger | EurekAlert!
Further information:
https://news.wsu.edu/2014/11/24/study-conserving-soil-and-water-in-dryland-wheat-region/#.VHRXXGF0zcs

Further reports about: Soil Science capillary action farmers moisture rainfall soil moisture wheat wind erosion

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>