Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Confusion can be beneficial for learning: Study

21.06.2012
Most of us assume that confidence and certainty are preferred over uncertainty and bewilderment when it comes to learning complex information.

But a new study led by Sidney D'Mello of the University of Notre Dame shows that confusion when learning can be beneficial if it is properly induced, effectively regulated, and ultimately resolved.

The study will be published in a forthcoming issue of Learning and Instruction.

Notre Dame Psychologist and Computer Scientist D'Mello, whose research areas include artificial intelligence, human-computer interaction and the learning sciences, together with Art Graesser of the University of Memphis, collaborated on the study, which was funded by the National Science Foundation.

They found that by strategically inducing confusion in a learning session on difficult conceptual topics, people actually learned more effectively and were able to apply their knowledge to new problems.

In a series of experiments, subjects learned scientific reasoning concepts through interactions with computer animated agents playing the roles of a tutor and a peer learner. The animated agents and the subject engaged in interactive conversations where they collaboratively discussed the merits of sample research studies that were flawed in one critical aspect. For example, one hypothetical case study touted the merits of a diet pill, but was flawed because it did not include an appropriate control group. Confusion was induced by manipulating the information the subjects received so that the animated agents' sometimes disagreed with each other and expressed contradictory or incorrect information. The agents then asked subjects to decide which opinion had more scientific merit, thereby putting the subject in the hot-spot of having to make a decision with incomplete and sometimes contradictory information.
In addition to the confusion and uncertainty triggered by the contradictions, subjects who were confused scored higher on a difficult post-test and could more successfully identify flaws in new case studies.
"We have been investigating links between emotions and learning for almost a decade, and find that confusion can be beneficial to learning if appropriately regulated because it can cause learners to process the material more deeply in order to resolve their confusion," D'Mello says.

According to D'Mello, it is not advisable to intentionally confuse students who are struggling or induce confusion during high-stakes learning activities. Confusion interventions are best for higher level learners who want to be challenged with difficult tasks, are willing to risk failure, and who manage negative emotions when they occur.

"It is also important that the students are productively instead of hopelessly confused. By productive confusion, we mean that the source of the confusion is closely linked to the content of the learning session, the student attempts to resolve their confusion, and the learning environment provides help when the student struggles. Furthermore, any misleading information in the form of confusion-induction techniques should be corrected over the course of the learning session, as was done in the present experiments."

According to D'Mello, the next step in this body of research is to apply these methods to some of the more traditional domains like physics where misconceptions are common.

Sidney D'Mello | EurekAlert!
Further information:
http://www.nd.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>