Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Confusion can be beneficial for learning: Study

Most of us assume that confidence and certainty are preferred over uncertainty and bewilderment when it comes to learning complex information.

But a new study led by Sidney D'Mello of the University of Notre Dame shows that confusion when learning can be beneficial if it is properly induced, effectively regulated, and ultimately resolved.

The study will be published in a forthcoming issue of Learning and Instruction.

Notre Dame Psychologist and Computer Scientist D'Mello, whose research areas include artificial intelligence, human-computer interaction and the learning sciences, together with Art Graesser of the University of Memphis, collaborated on the study, which was funded by the National Science Foundation.

They found that by strategically inducing confusion in a learning session on difficult conceptual topics, people actually learned more effectively and were able to apply their knowledge to new problems.

In a series of experiments, subjects learned scientific reasoning concepts through interactions with computer animated agents playing the roles of a tutor and a peer learner. The animated agents and the subject engaged in interactive conversations where they collaboratively discussed the merits of sample research studies that were flawed in one critical aspect. For example, one hypothetical case study touted the merits of a diet pill, but was flawed because it did not include an appropriate control group. Confusion was induced by manipulating the information the subjects received so that the animated agents' sometimes disagreed with each other and expressed contradictory or incorrect information. The agents then asked subjects to decide which opinion had more scientific merit, thereby putting the subject in the hot-spot of having to make a decision with incomplete and sometimes contradictory information.
In addition to the confusion and uncertainty triggered by the contradictions, subjects who were confused scored higher on a difficult post-test and could more successfully identify flaws in new case studies.
"We have been investigating links between emotions and learning for almost a decade, and find that confusion can be beneficial to learning if appropriately regulated because it can cause learners to process the material more deeply in order to resolve their confusion," D'Mello says.

According to D'Mello, it is not advisable to intentionally confuse students who are struggling or induce confusion during high-stakes learning activities. Confusion interventions are best for higher level learners who want to be challenged with difficult tasks, are willing to risk failure, and who manage negative emotions when they occur.

"It is also important that the students are productively instead of hopelessly confused. By productive confusion, we mean that the source of the confusion is closely linked to the content of the learning session, the student attempts to resolve their confusion, and the learning environment provides help when the student struggles. Furthermore, any misleading information in the form of confusion-induction techniques should be corrected over the course of the learning session, as was done in the present experiments."

According to D'Mello, the next step in this body of research is to apply these methods to some of the more traditional domains like physics where misconceptions are common.

Sidney D'Mello | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>