Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Confusion can be beneficial for learning: Study

21.06.2012
Most of us assume that confidence and certainty are preferred over uncertainty and bewilderment when it comes to learning complex information.

But a new study led by Sidney D'Mello of the University of Notre Dame shows that confusion when learning can be beneficial if it is properly induced, effectively regulated, and ultimately resolved.

The study will be published in a forthcoming issue of Learning and Instruction.

Notre Dame Psychologist and Computer Scientist D'Mello, whose research areas include artificial intelligence, human-computer interaction and the learning sciences, together with Art Graesser of the University of Memphis, collaborated on the study, which was funded by the National Science Foundation.

They found that by strategically inducing confusion in a learning session on difficult conceptual topics, people actually learned more effectively and were able to apply their knowledge to new problems.

In a series of experiments, subjects learned scientific reasoning concepts through interactions with computer animated agents playing the roles of a tutor and a peer learner. The animated agents and the subject engaged in interactive conversations where they collaboratively discussed the merits of sample research studies that were flawed in one critical aspect. For example, one hypothetical case study touted the merits of a diet pill, but was flawed because it did not include an appropriate control group. Confusion was induced by manipulating the information the subjects received so that the animated agents' sometimes disagreed with each other and expressed contradictory or incorrect information. The agents then asked subjects to decide which opinion had more scientific merit, thereby putting the subject in the hot-spot of having to make a decision with incomplete and sometimes contradictory information.
In addition to the confusion and uncertainty triggered by the contradictions, subjects who were confused scored higher on a difficult post-test and could more successfully identify flaws in new case studies.
"We have been investigating links between emotions and learning for almost a decade, and find that confusion can be beneficial to learning if appropriately regulated because it can cause learners to process the material more deeply in order to resolve their confusion," D'Mello says.

According to D'Mello, it is not advisable to intentionally confuse students who are struggling or induce confusion during high-stakes learning activities. Confusion interventions are best for higher level learners who want to be challenged with difficult tasks, are willing to risk failure, and who manage negative emotions when they occur.

"It is also important that the students are productively instead of hopelessly confused. By productive confusion, we mean that the source of the confusion is closely linked to the content of the learning session, the student attempts to resolve their confusion, and the learning environment provides help when the student struggles. Furthermore, any misleading information in the form of confusion-induction techniques should be corrected over the course of the learning session, as was done in the present experiments."

According to D'Mello, the next step in this body of research is to apply these methods to some of the more traditional domains like physics where misconceptions are common.

Sidney D'Mello | EurekAlert!
Further information:
http://www.nd.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>