Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concrete columns with internal bars made of glass fibers can make a building sturdier

16.07.2009
The University of Miami, through its NSF Industry/University Cooperative Research Center RB2C performed the first-ever tests of full-scale concrete columns internally reinforced with glass fiber reinforced polymer bars

Conventional means of internal reinforcement for concrete member in buildings involve steel bars. Yet for structures that function in harsh environments like coastal regions, or for structures that support sensitive equipment, such as magnetic resonance imaging units; the use of fiber reinforced polymer (FRP) is emerging as a valuable option, due to its natural resistance to corrosion, its high strength, light weight, transparency to electrical and magnetic fields and ease of manufacturing and installment.

However, little has been done to study the performance of concrete columns reinforced with FRP bars. Currently the American Concrete Institute, a nonprofit technical and educational society and one of the world's leading authorities on concrete technology, does not address the use of FRP bars for reinforcement in columns, but welcomes additional relevant research and experimental evidence.

Full-scale experiments are critical to validate the technology, and to produce compelling evidence that underpins rational design methodologies. To address this need, the National Science Foundation (NSF) Industry/University Cooperative Research Center "Repair of Buildings and Bridges with Composites" (RB2C) at the University of Miami (UM) examined the behavior of concrete (RC) columns internally reinforced with glass FRP (GFRP) bars on full-scale specimens for the first time ever.

The new study demonstrates that the behavior of GFRP-RC columns was very similar to that of the conventional steel counterpart. The results of this project will be presented by Antonio De Luca, graduate student at the University of Miami College of Engineering, during the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, in Sydney Australia, on July 13-15.

"The outcomes of our study provide a compelling case to modify existing design guidelines and allow for limited use of GFRP bars in columns, particularly when corrosion resistance or electromagnetic transparency is sought," De Luca said.

Other important findings of this project include:

The GFRP vertical bars are not detrimental for the concrete column performance.

The contribution of the GFRP to the column capacity is very small, if the amount of longitudinal reinforcement is used. Therefore, the presence of the GFRP bars can be neglected in the computation of the ultimate column capacity.

Difference in manufacturer of the GFRP bars does not affect the performance when bars are of the same quality.

Use of GFRP bars as compression reinforcement may be allowed when design is for vertical loads only.

The next stage of the study is meant to demonstrate that specimen scale does not affect GFRP-RC column specimen performance; and to investigate the behavior of GFRP-RC column specimens subjected to compressive load applied with a small eccentricity.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>