Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concrete columns with internal bars made of glass fibers can make a building sturdier

16.07.2009
The University of Miami, through its NSF Industry/University Cooperative Research Center RB2C performed the first-ever tests of full-scale concrete columns internally reinforced with glass fiber reinforced polymer bars

Conventional means of internal reinforcement for concrete member in buildings involve steel bars. Yet for structures that function in harsh environments like coastal regions, or for structures that support sensitive equipment, such as magnetic resonance imaging units; the use of fiber reinforced polymer (FRP) is emerging as a valuable option, due to its natural resistance to corrosion, its high strength, light weight, transparency to electrical and magnetic fields and ease of manufacturing and installment.

However, little has been done to study the performance of concrete columns reinforced with FRP bars. Currently the American Concrete Institute, a nonprofit technical and educational society and one of the world's leading authorities on concrete technology, does not address the use of FRP bars for reinforcement in columns, but welcomes additional relevant research and experimental evidence.

Full-scale experiments are critical to validate the technology, and to produce compelling evidence that underpins rational design methodologies. To address this need, the National Science Foundation (NSF) Industry/University Cooperative Research Center "Repair of Buildings and Bridges with Composites" (RB2C) at the University of Miami (UM) examined the behavior of concrete (RC) columns internally reinforced with glass FRP (GFRP) bars on full-scale specimens for the first time ever.

The new study demonstrates that the behavior of GFRP-RC columns was very similar to that of the conventional steel counterpart. The results of this project will be presented by Antonio De Luca, graduate student at the University of Miami College of Engineering, during the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, in Sydney Australia, on July 13-15.

"The outcomes of our study provide a compelling case to modify existing design guidelines and allow for limited use of GFRP bars in columns, particularly when corrosion resistance or electromagnetic transparency is sought," De Luca said.

Other important findings of this project include:

The GFRP vertical bars are not detrimental for the concrete column performance.

The contribution of the GFRP to the column capacity is very small, if the amount of longitudinal reinforcement is used. Therefore, the presence of the GFRP bars can be neglected in the computation of the ultimate column capacity.

Difference in manufacturer of the GFRP bars does not affect the performance when bars are of the same quality.

Use of GFRP bars as compression reinforcement may be allowed when design is for vertical loads only.

The next stage of the study is meant to demonstrate that specimen scale does not affect GFRP-RC column specimen performance; and to investigate the behavior of GFRP-RC column specimens subjected to compressive load applied with a small eccentricity.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>