Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulations can be as effective as direct observation at teaching students

12.02.2010
Students can learn some science concepts just as well from computers simulations as they do from direct observation, new research suggests.
A study found that people who used computer simulations to learn about moon phases understood the concepts just as well – and in some cases better – than did those who learned from collecting data from viewing the moon.

The results suggest the use of computer simulations in science classes may be an effective and often less expensive and time-consuming way to teach some science concepts, said Kathy Cabe Trundle, lead author of the study and associate professor of science education at Ohio State University.

“These results give us confidence that computer simulations can be effective in the classroom,” Trundle said. “But now we need to do further study to see if it works in others areas of science.”

Trundle conducted the study with Randy Bell, associate professor of science education at the University of Virginia. Their study appears online in the journal Computers & Education and will be published in a future print edition.

While there have been many studies examining computer use in the classroom, most have only examined whether students find computers easy to use and enjoy using them.

The few studies that have examined whether computers are effective for learning content have had mixed results, Trundle said. This study is an improvement because it actually compares people who used a computer simulation with those who had more direct observations.

“Our expectation was that the computer simulation would be at least as effective as direct observation in teaching about moon phases,” Trundle said.

“When we did our analysis, the simulation was just as effective in teaching two aspects of moon phases, and more effective in a third aspect. So we were excited by that.”

Participants in the study were 157 pre-service teachers-- master’s degree students who are in training to become early childhood teachers.

Studies have shown that the majority of people – including preservice students and the students they teach – do not understand the cause of moon phases.

This study examined how well these preservice teachers understood moon phases before and after taking a 10-week science methods course that included a unit on moon phases.

In contrast to traditional instruction, this class was inquiry-based, which meant that students learned from gathering data themselves -- either directly from viewing the moon or from the computer simulation. The participants then analyzed the data they gathered to identify patterns.

One class learned about moon phases using only a computer simulation, one group from nature alone, and a third group from both a computer simulation and nature.

The computer simulations were provided through a commercially available software program that allows users to visualize the movement of the sun and the moon through time from any point on Earth.

The researchers tested the participants’ understanding before and after the class in three areas: knowledge of sequences of moon phases, the causes of moon phases, and the shapes of moon phases.

Before the class, none of the preservice teachers had a complete scientific knowledge of the moon phases.

But after the class, teachers in all three groups – computer simulation only, nature only and simulation and nature – dramatically improved their scores. Up to 98 percent of the teachers showed they understood moon phases after the class was completed.

Those who used only computer simulations did just as well as others in learning causes of moon phases and shapes of moon phases. But those who used the simulations were actually slightly more likely than others to understand the sequences of moon phases.

“We believe that the computer simulation was more effective at teaching moon sequences because the students who used it had a complete set of data,” Trundle said.

“Those who observed the moon in nature didn’t – there were cloudy days and nights and other reasons why they couldn’t collect data every night they were supposed to.”

The ability to collect all the available data is just one reason why computer simulations may be better for teaching some science concepts.

“Classroom teachers don’t always have time to do nature-based instruction,” Trundle said. “In this case, computer simulations allow teachers to speed up instruction, which means students gather the same amount of data in a shorter period of time. It’s faster, easier and much less frustrating.”

Computer simulations may be especially important in teaching earth and space science, because it offers opportunities that aren’t available in the real world. For example, the software program used in this study allows students to see how the earth looks from the moon or from the sun, giving them a better perspective on how the earth-moon-sun system interacts.

Trundle said computer simulations might also be effective in teaching introductory biology. For example, students can take part in simulated animal dissections, overcoming some of the ethical and practical concerns.

Simulations would also allow students to “see” microscopic or even sub-atomic particles, giving them a better understanding of how particles interact.

“We’re finding that technology can help students learn and understand scientific concepts in a way that may be easier for teachers and just as effective for students,” Trundle said.

Contact: Kathy Trundle, (614) 292-5820; Trundle.1@osu.edu
Written by Jeff Grabmeier, (614) 292-8457; Grabmeier.1@osu.edu

Kathy Trundle | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>