Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Model Shows Changes in Brain Mechanisms for Cocaine Addicts

25.09.2009
Mizzou Scientists predict brain mechanisms must undergo alteration for addicts to recover

About 2 million Americans currently use cocaine for its temporary side-effects of euphoria, which have contributed to making it one of the most dangerous and addictive drugs in the country.

Cocaine addiction, which can cause severe biological and behavioral problems, is very difficult to overcome. Now, University of Missouri researchers Ashwin Mohan and Sandeep Pendyam, doctoral students in the Department of Electrical and Computer Engineering, are utilizing computational models to study how the brain’s chemicals and synaptic mechanisms, or connections between neurons, react to cocaine addiction and what this could mean for future therapies.

“With cocaine addiction, addicts don’t feel an urge to revolt because there is a strong connection in the brain from the decision-making center to the pleasure center, which overwhelms other normal rewards and is why they keep seeking it,” Pendyam said. “By using computational models, we’re targeting the connection in the brain that latches onto the pleasure center and the parameters that maintain that process.”

Glutamate is the major chemical released in the synaptic connections in the brain; the right amount present determines the activity of those connections. Using the computational model, MU researchers found that in an addict’s brain excessive glutamate produced in the pleasure center makes the brain’s mechanisms unable to regulate themselves and creates permanent damage, making cocaine addiction a disease that is more than just a behavioral change.

“Our model showed that the glutamate transporters, a protein present around these connections that remove glutamate, are almost 40 percent less functional after chronic cocaine usage,” Mohan said. “This damage is long lasting, and there is no way for the brain to regulate itself. Thus, the brain structure in this context actually changes in cocaine addicts.”

Mohan and Pendyam, in collaboration with MU professor Satish Nair, professor of electrical and computer engineering, and Peter Kalivas, professor and chair of the neuroscience department at the Medical University of South Carolina, found that the parameters of the brain that activate the pleasure center’s connections beyond those that have been discovered must undergo alteration in order for addicts to recover. This novel prediction by the computer model was confirmed based on experimental studies done on animal models by Kalivas’ laboratory.

“The long-term objective of our research is to find out how some rehabilitative drugs work by devising a model of the fundamental workings of an addict’s brain,” said Mohan, who will attend Washington University in St. Louis for his postdoctoral fellowship. “Using a systems approach helped us to find key information about the addict’s brain that had been missed in the past two decades of cocaine addiction research.”

Moham and Pendyam’s research has been published in Neuroscience and as a book chapter in New Research on Neuronal Network from Nova Publishers.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>