Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Model Shows Changes in Brain Mechanisms for Cocaine Addicts

25.09.2009
Mizzou Scientists predict brain mechanisms must undergo alteration for addicts to recover

About 2 million Americans currently use cocaine for its temporary side-effects of euphoria, which have contributed to making it one of the most dangerous and addictive drugs in the country.

Cocaine addiction, which can cause severe biological and behavioral problems, is very difficult to overcome. Now, University of Missouri researchers Ashwin Mohan and Sandeep Pendyam, doctoral students in the Department of Electrical and Computer Engineering, are utilizing computational models to study how the brain’s chemicals and synaptic mechanisms, or connections between neurons, react to cocaine addiction and what this could mean for future therapies.

“With cocaine addiction, addicts don’t feel an urge to revolt because there is a strong connection in the brain from the decision-making center to the pleasure center, which overwhelms other normal rewards and is why they keep seeking it,” Pendyam said. “By using computational models, we’re targeting the connection in the brain that latches onto the pleasure center and the parameters that maintain that process.”

Glutamate is the major chemical released in the synaptic connections in the brain; the right amount present determines the activity of those connections. Using the computational model, MU researchers found that in an addict’s brain excessive glutamate produced in the pleasure center makes the brain’s mechanisms unable to regulate themselves and creates permanent damage, making cocaine addiction a disease that is more than just a behavioral change.

“Our model showed that the glutamate transporters, a protein present around these connections that remove glutamate, are almost 40 percent less functional after chronic cocaine usage,” Mohan said. “This damage is long lasting, and there is no way for the brain to regulate itself. Thus, the brain structure in this context actually changes in cocaine addicts.”

Mohan and Pendyam, in collaboration with MU professor Satish Nair, professor of electrical and computer engineering, and Peter Kalivas, professor and chair of the neuroscience department at the Medical University of South Carolina, found that the parameters of the brain that activate the pleasure center’s connections beyond those that have been discovered must undergo alteration in order for addicts to recover. This novel prediction by the computer model was confirmed based on experimental studies done on animal models by Kalivas’ laboratory.

“The long-term objective of our research is to find out how some rehabilitative drugs work by devising a model of the fundamental workings of an addict’s brain,” said Mohan, who will attend Washington University in St. Louis for his postdoctoral fellowship. “Using a systems approach helped us to find key information about the addict’s brain that had been missed in the past two decades of cocaine addiction research.”

Moham and Pendyam’s research has been published in Neuroscience and as a book chapter in New Research on Neuronal Network from Nova Publishers.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>