Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Model Shows Changes in Brain Mechanisms for Cocaine Addicts

25.09.2009
Mizzou Scientists predict brain mechanisms must undergo alteration for addicts to recover

About 2 million Americans currently use cocaine for its temporary side-effects of euphoria, which have contributed to making it one of the most dangerous and addictive drugs in the country.

Cocaine addiction, which can cause severe biological and behavioral problems, is very difficult to overcome. Now, University of Missouri researchers Ashwin Mohan and Sandeep Pendyam, doctoral students in the Department of Electrical and Computer Engineering, are utilizing computational models to study how the brain’s chemicals and synaptic mechanisms, or connections between neurons, react to cocaine addiction and what this could mean for future therapies.

“With cocaine addiction, addicts don’t feel an urge to revolt because there is a strong connection in the brain from the decision-making center to the pleasure center, which overwhelms other normal rewards and is why they keep seeking it,” Pendyam said. “By using computational models, we’re targeting the connection in the brain that latches onto the pleasure center and the parameters that maintain that process.”

Glutamate is the major chemical released in the synaptic connections in the brain; the right amount present determines the activity of those connections. Using the computational model, MU researchers found that in an addict’s brain excessive glutamate produced in the pleasure center makes the brain’s mechanisms unable to regulate themselves and creates permanent damage, making cocaine addiction a disease that is more than just a behavioral change.

“Our model showed that the glutamate transporters, a protein present around these connections that remove glutamate, are almost 40 percent less functional after chronic cocaine usage,” Mohan said. “This damage is long lasting, and there is no way for the brain to regulate itself. Thus, the brain structure in this context actually changes in cocaine addicts.”

Mohan and Pendyam, in collaboration with MU professor Satish Nair, professor of electrical and computer engineering, and Peter Kalivas, professor and chair of the neuroscience department at the Medical University of South Carolina, found that the parameters of the brain that activate the pleasure center’s connections beyond those that have been discovered must undergo alteration in order for addicts to recover. This novel prediction by the computer model was confirmed based on experimental studies done on animal models by Kalivas’ laboratory.

“The long-term objective of our research is to find out how some rehabilitative drugs work by devising a model of the fundamental workings of an addict’s brain,” said Mohan, who will attend Washington University in St. Louis for his postdoctoral fellowship. “Using a systems approach helped us to find key information about the addict’s brain that had been missed in the past two decades of cocaine addiction research.”

Moham and Pendyam’s research has been published in Neuroscience and as a book chapter in New Research on Neuronal Network from Nova Publishers.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>