Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compounds in mate tea induce death in colon cancer cells

24.01.2012
Could preventing colon cancer be as simple as developing a taste for yerba mate tea?

In a recent University of Illinois study, scientists showed that human colon cancer cells die when they are exposed to the approximate number of bioactive compounds present in one cup of this brew, which has long been consumed in South America for its medicinal properties.

"The caffeine derivatives in mate tea not only induced death in human colon cancer cells, they also reduced important markers of inflammation," said Elvira de Mejia, a U of I associate professor of food chemistry and food toxicology.

That's important because inflammation can trigger the steps of cancer progression, she said.

In the in vitro study, de Mejia and former graduate student Sirima Puangpraphant isolated, purified, and then treated human colon cancer cells with caffeoylquinic acid (CQA) derivatives from mate tea. As the scientists increased the CQA concentration, cancer cells died as a result of apoptosis.

"Put simply, the cancer cell self-destructs because its DNA has been damaged," she said.

The ability to induce apoptosis, or cell death, is a promising tactic for therapeutic interventions in all types of cancer, she said.

de Mejia said they were able to identify the mechanism that led to cell death. Certain CQA derivatives dramatically decreased several markers of inflammation, including NF-kappa-B, which regulates many genes that affect the process through the production of important enzymes. Ultimately cancer cells died with the induction of two specific enzymes, caspase-3 and caspase-8, de Mejia said.

"If we can reduce the activity of NF-kappa-B, the important marker that links inflammation and cancer, we'll be better able to control the transformation of normal cells to cancer cells," she added.

The results of the study strongly suggest that the caffeine derivatives in mate tea have potential as anti-cancer agents and could also be helpful in other diseases associated with inflammation, she said.

But, because the colon and its microflora play a major role in the absorption and metabolism of caffeine-related compounds, the anti-inflammatory and anti-cancer effects of mate tea may be most useful in the colon.

"We believe there's ample evidence to support drinking mate tea for its bioactive benefits, especially if you have reason to be concerned about colon cancer. Mate tea bags are available in health food stores and are increasingly available in large supermarkets," she added.

The scientists have already completed and will soon publish the results of a study that compares the development of colon cancer in rats that drank mate tea as their only source of water with a control group that drank only water.

This in vitro study was published in Molecular Nutrition & Food Research, vol. 55, pp. 1509-1522, in 2011. Co-authors include Sirima Puangpraphant, now an assistant professor at Kasetsart University in Thailand; Greg Potts, an undergraduate student of the U of I; and Mark A. Berhow and Karl Vermillion of the USDA, ARS, National Center for Agricultural Utilization Research in Peoria, Illinois. The work was funded by the U of I Research Board and Puangpraphant's Royal Thai Government Scholarship.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>