Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel compound found effective against avian influenza virus

26.02.2010
A novel compound is highly effective against the pathogenic H5N1 avian influenza virus, including some drug-resistant strains, according to new research led by a University of Wisconsin-Madison virologist.

The work, published in the Public Library of Science journal PLoS Pathogens on Feb. 26, suggests that the compound CS-8958 is a promising alternative antiviral for prevention and treatment of bird flu.

Antiviral drugs are a primary countermeasure against human influenza viruses, including the highly pathogenic H5N1 avian influenza virus, which causes bird flu. Emerging strains resistant to existing drugs, particularly oseltamivir (Tamiflu), pose a threat and make the development of alternate antivirals a pressing public health issue, says Yoshihiro Kawaoka, a professor of pathobiological sciences at the UW-Madison School of Veterinary Medicine and senior author of the new study.

Kawaoka and a group of researchers from Japan, Vietnam, and Indonesia tested a novel neuraminidase inhibitor R-125489 and its prodrug CS-8958, which had previously shown potent activity against seasonal influenza viruses in laboratory animals.

Working with mice, the researchers found that a single intranasal dose of CS-8958 given two hours after infection with H5N1 influenza virus resulted in a higher survival rate and lower virus levels than a standard five-day course of oseltamivir. CS-8958 was also effective against highly pathogenic and oseltamivir-resistant strains of H5N1 virus.

In addition to its therapeutic use, CS-8958 also protected mice against lethal H5N1 infection when given seven days before infection with the virus.

"This compound requires only a single administration for both treatment and prophylaxis. Such prophylaxis would be highly desirable for seasonal influenza as well as a potential pandemic situation," says Kawaoka.

Although follow-up studies will be needed to confirm the applicability of the findings to humans, "CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants," the authors conclude.

Jill Sakai, 608-262-9772, jasakai@wisc.edu

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>