Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complexity Not So Costly After All, Analysis Shows

28.09.2010
The more complex a plant or animal, the more difficulty it should have adapting to changes in the environment. That's been a maxim of evolutionary theory since biologist Ronald Fisher put forth the idea in 1930.

But if that tenet is true, how do you explain all the well-adapted, complex organisms---from orchids to bower birds to humans---in this world?

This "cost of complexity" conundrum puzzles biologists and offers ammunition to proponents of intelligent design, who hold that such intricacy could arise only through the efforts of a divine designer, not through natural selection.

A new analysis by Jianzhi "George" Zhang and coworkers at the University of Michigan and Taiwan's National Health Research Institutes reveals flaws in the models from which the cost of complexity idea arose and shows that complexity can, indeed, develop through evolutionary processes. In fact, a moderate amount of complexity best equips organisms to adapt to environmental change, the research suggests. The findings will be published online in the Proceedings of the National Academy of Sciences during the week of Sept. 27.

The study focused on a genetic phenomenon called pleiotropy, in which a single gene affects more than one trait. Examples of pleiotropy are well known in certain human diseases, and the effect also has been documented in experimental animals such as fruit flies. Biologists also recognize its importance in development, aging and many evolutionary processes. However, pleiotropy is difficult to measure, and its general patterns are poorly understood, said Zhang, a professor of ecology and evolutionary biology.

Even so, scientists have developed mathematical models of the phenomenon, based on certain assumptions, and have made predictions from the results of the models. Zhang and coworkers decided to test the assumptions against real-life observations by analyzing several large databases that catalog the effects of specific genetic mutations on traits in model organisms (yeast, roundworms and mice). Each data set included hundreds to thousands of genes and tens to hundreds of traits.

For simplicity, mathematical models of pleiotropy have assumed that all genes in an organism affect all of its traits to some extent. But Zhang's group found that most genes affect only a small number of traits, while relatively few genes affect large numbers of traits.

What's more, they found a "modular" pattern of organization, with genes and traits grouped into sets. Genes in a particular set affect a particular group of traits, but not traits in other groups.

In addition, the researchers learned that the more traits a gene affects, the stronger its effect on each trait.

All of these findings challenge the assumptions underlying the classic mathematical models that suggest complexity is prohibitively costly.

When Fisher first wrote about the cost of complexity, he argued that random mutations---which, along with natural selection, drive evolution---are more likely to benefit simple organisms than complex organisms.

"Think of a hammer and a microscope," Zhang said. "One is complex, one is simple. If you change the length of an arbitrary component of the system by an inch, for example, you're more likely to break the microscope than the hammer."

In a paper published in 2000, evolutionary geneticist H. Allen Orr of Rochester came up with additional reasons for the cost of complexity. According to his model, even if a mutation benefits a complex organism, it's unlikely to spread throughout the whole population and become "fixed." And even if it does that, the advantage of the mutation is likely to be small.

By incorporating a more realistic representation of pleiotropy, Zhang's analysis found the reverse of Orr's arguments to be true. Although Fisher's observation still holds, reversing Orr's assertions minimizes its impact, thus reducing the cost of complexity.

Further, the analysis showed that the ability of organisms to adapt is highest at intermediate levels of complexity. "This means a simple organism is not best, and a very complex organism is not best; some intermediate level of complexity is best in terms of the adaptation rate," Zhang said.

The new findings help buffer evolutionary biology against the criticisms of intelligent design proponents, Zhang said. "The evolution of complexity is one thing that they often target. Admittedly, there were some theoretical difficulties in explaining the evolution of complexity because of the notion of the cost of complexity, but with our findings these difficulties are now removed."

Zhang's coauthors on the paper are former U-M graduate student Zhi Wang, now at Sage Bionetworks in Seattle, Wash., and Ben-Yang Liao of the National Health Research Institutes in Taiwan.

Funding was provided by the U.S. National Institutes of Health and the Taiwan National Health Research Institutes.

More information:

Zhang: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1161

Proceedings of the National Academy of Sciences: http://www.pnas.org/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu
http://www.pnas.org/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>