Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Food Preservative May Slow, Even Stop Tumor Growth

01.11.2012
Nisin, a common food preservative, may slow or stop squamous cell head and neck cancers, a University of Michigan study found.

What makes this particularly good news is that the Food and Drug Administration and the World Health Organization approved nisin as safe for human consumption decades ago, says Yvonne Kapila, the study's principal investigator and professor at the University of Michigan School of Dentistry.

This means that obtaining FDA approval to test nisin's suggested cancer-fighting properties on patients in a clinical setting won't take as long as a new therapy that hasn't been tried yet on people, she says.

Antibacterial agents like nisin alter cell properties in bacteria to render it harmless. However, it's only recently that scientists began looking to antibacterial agents like nisin to see if they altered properties in other types of cells, such as cancer cells or cells in tumors.

Oral cancer is a leading cause of death worldwide, and oral squamous cell carcinoma accounts for more than 90 percent of oral cancers. However, survival rates for oral cancer haven't improved in decades, according to the study.

"The poor five-year survival rates for oral cancer underscore the need to find new therapies for oral cancer," Kapila said. "The use of small antibacterial agents, like nisin, to treat cancer is a new approach that holds great promise. Nisin is a perfect example of this potential because it has been used safely in humans for many years, and now the laboratory studies support its anti-tumor potential."

The U-M study, which looked at the use of antimicrobials to fight cancerous tumors, suggests nisin, in part, slows cell proliferation or causes cell death through the activation of a protein called CHAC1 in cancer cells, a protein known to influence cell death.

The study is the first to show CHAC1's new role in promoting cancer cell death under nisin treatment. The findings also suggest that nisin may work by creating pores in the cancer cell membranes that allow an influx of calcium. It's unclear what role calcium plays in nisin-triggered cell death, but it's well known that calcium is a key regulator in cell death and survival.

Additionally, the findings suggest that nisin slows or stops tumor growth by interrupting the cell cycle in "bad" cells but not the good cells; thus nisin stops cancer cell proliferation but doesn't hurt good cells.

The paper, "Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC," appears this month in the journal Cancer Medicine.

Yvonne Kapila: www.dent.umich.edu/pom/faculty/links/ykbio

U-M School Dentistry: http://dent.umich.edu

EDITORS: Photo is available at www.ns.umich.edu/Releases/2012/Oct12/nisin.html

Laura Bailey | Newswise Science News
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>